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Abstract. Many studies show that opinions formation displays multi-
ple patterns, from consensus to polarization. Under the framework of
the social influence network by Friedkin and Johnsen (1999) and based
on random walk on graph, we rigorously prove that for a social group
influence system, with static social influence structure, the group con-
sensus is almost a quite certain result. In addition, we prove the lower
bounds on the convergence time m for random walk P™ to be close to
its final average consensus (wisdom group decision making) state, given
an arbitrary initial opinions profile vector and one small positive error e.
Although our explanations are purely based on mathematic deduction,
it shows that the latent social influence structure is the key factor for
the persistence of disagreement and formation of opinions convergence
or consensus in the real world social group.

Keywords: Social influence network theory - Random graph - Opinions
dynamics

1 Introduction

Originally from decentralized decision making, consensus problems have an
old history, such as the models introduced in DeGroot(1974)[1], Friedkin and
Johnsen (1999)[2] and Friedkin (2011)[3]. From social psychological point of
view, this line of research began with French’s formal theory of social power[4],
a simple model of collective opinion formation in a network of interpersonal
influencing social group. As a step forward, Friedkin presented the social influ-
ence network theory, which considered both cognitive and structural aspects,
and focused on the contributions of networks of interpersonal influence to the
formation of interpersonal agreements and group consensus.

Over the past few years, models of the convergence of opinion or consensus
problem in social systems have been the subjects of a considerable amount of
recent attention in the fields such as motion coordination of autonomous agents
[5,6], distributed computation in control theory [5,7,8], randomized consensus
algorithms [9,10], and sensor networks about data fusion problems [11]-[15].
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Most of the growing interests in consensus problems (both algorithms and
practical applications) are based on probabilistic settings. This might be due
to the unpredictability of the environment where the communication between
agents occurs [9], and the random characteristics of influences or interactions
among agents in systems (man made or social systems).

Recently, the study of opinion dynamics has started to attract the atten-
tion of the control community, who with the bulk of motivation have developed
about methods to approximate and stabilize consensus, synchronization, and
other coherent states. However, comparing with many man-made or engineering
systems, social systems do not typically exhibit a consensus of opinions, but
rather a persistence of disagreement, i.e. polarization patterns. The ubiquitous
group polarization phenomena can be observed from political election to carbon
dioxide emissions debate[16]. In a social system, the difficulty in arriving at a
collective consensus state roots in the fact that the process of opinion forma-
tion can rarely be reduced to accepting or rejecting the consensus of others, as
exemplified by Arrow’s dilemma of social choice [17]. On the contrary, in most
cases individuals construct their options in a complex interpersonal environment
or with their prior identities (e.g. prior beliefs, prejudices and social identities
etc.), their views are often in a state of disagreement or not easily changed, due
to opinion-dependent limitations in the network connectivity and obstinacy of
the agents as pointed in Ref. [18]. This phenomenon shows the complexities of
social control in social economic systems.®

Consensus as one of the important and regular group opinions dynamic pat-
tern is generally observed in a relative smaller group discussion and barging
process. Friedkin and Johnsen’s social influence network theory emphasizes that
the interpersonal influence social structure (or social influence matrix) is the
underling precondition for the group consensus or opinion convergence. In that
model, the initial social influence structure of group of actors is assumed to be
fixed during the entire process of opinion formation. However, with the evolution
of time stamp, considering both stubborn and susceptible effects, the interper-
sonal influence structure can be regarded as a dynamic recursive process. For
this reason, the interpersonal influence structure in their model is also dynamic,
as described in Section 2.

From social influence matrix point of view, in large scale group opinions
dynamic processes, the group belief is difficult to reach convergence, let alone
consensus state, since social influence structures are generally unconnected, not
to mention the social impact relations can be positive, negative or neutral. For
example, on-line highlighted discussion, political or social hot spot debates often
display polarization patterns [19].

In this paper, our interests concentrate on the precondition for consensus
formation in a social group based on Friedkin’s model. From interpersonal net-
work structure point of view, our investigation presents the conditions for the

Y In classical sociological field, social control refers to the occurrence and effective-
ness of ongoing efforts in a group to formulate, agree upon and implement collective
courses of action.
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formation of group opinions convergence and consensus. We investigate the opin-
ions convergence phenomenon over a group of IV individuals with a random walk
social influence structure, and for any given initial opinions distribution, i.e. the
opinions evolution problem with a (time-variant) linear dynamic model driven
by random matrices. Our analytic proof provides strict mathematic explanations
for the deterministic characterization of the ergodicity, which can be used for
studying the consensus over random graphs and the formation of opinion par-
ties. The proof procedures are self-contained and based on ergodic theorem of
Markov chain and eigenvalues of random graph, as introduced in Ref.[20].

2 Problem Formulation and Terminology

Social influence network theory presents a mathematical formalization of the
social process of opinions changes that unfold in a social network of interpersonal
influences. The spread of influence among individuals in a social network can be
naturally modeled under a probabilistic framework, here, we briefly describe the
classical Friedkin and Johnsen’s model to illustrate how the opinion dynamics
arise in the context of social networks.

Let W = [w;j] is a N x N row random matrix of interpersonal influence,
i.e. for each 7, w;; denotes for the individual j’s social influence to ¢, Zj w; = 1.
A = diag(ai,as,...,an) is a N x N diagonal matrix of individuals susceptibilities
to interpersonal influence on the opinion. In a group of N persons, with the initial
N x 1 opinions vector y(l), the updating opinions vector y(t) in the interpersonal
opinions influence system is described by Equ.(1),

y D = AWy 4 (1 — Ay (1)

Definition 1. The system (1) reaches the convergence state if, for any initial
opinions vector y™V, it holds that tlim y® =y,
— 00

Definition 2. The system (1) reaches consensus state if, for any initial opinions
(t)

vector yV, and each 1 < i,j < N, it holds that tlim ly;’ — y§t)\ =0, where |.|
s the symbol of the absolute value. This means that, as a result of the social

influence process, in the limit they have the same belief on the subject.

As a consequence of system (1), the opinion profile at time ¢t € Z > 0 is equal
to

y =Wy, (2)

where Wt = (AW)t + (Zh_4(AW)*)(I — A) is the reduced-form coefficients
matrix, discribing the total or net interpersonal effects that transform the ini-
tial opinions into equilibrium opinions, and for any entry wj; in W*, satisfies
0 <wj; <1, 3, wj; = 1. According to Def.1, under suitable conditions, when
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t — 400 if I — AW is nonsingular, the system (1) arrives at convergence equilib-
rium opinions profile y*, where y* = lim y(t) = (I — AW)~1(I — A)y™. When

t — +o00, we have

Jim Wt = tlirglo{(AW)t + i(AW)k(I —A)}y=(I-AW)" Y I - A) =V. (3)
k=0

Given large enough time stamp ¢, and a sufficiently small positive real number
g, V can be approximated by Wt. Furthermore, according to the approximation
error ||[W! — V|| < e (where ||.|| denotes the matrix norm), we can obtain the
time stamp’s upper bound and lower bound as In(||V|| — e)/ln(||ﬁ/\|\) <t<
In(|[VI+&)/In([[W]]), where [[W]| = [[AW + I — A]|.

Followed the same lines of the convergence results by Ishii and Tempo (2010)
[21], and Golub and Jackson (2010) [22], by showing the ergodicity property,
Frasca, et al.(2013) proved the convergence result of system (1)[18]. Touri and
Nedic (2011) studied the ergodicity and consensus problem with a linear discrete-
time dynamic model driven by stochastic matrices [23].

It should be noted according to Def.1, that equilibrium opinions may settle on
the mean of group members’ initial opinions, a compromise opinion that differs
from the initial ones, or altered opinions that do not form a consensus. When
consensus is formed in system (1), i.e. as t — +o0, W will have the form of a
stratification of individual contributions as following,

Nttt Nt

w%1 w%2 wé\,N
— Wiy Wy ... Wy

t_
Wt = . .. )
wt, W Nk

11 Wag ... Wiy

which suggests that the initial opinion of each individual makes a particular
relative contribution to the emergent consensus.

3 Random Walk on Weighted Graph

In this section, without the lose of the generality of system (1), we firstly intro-
duce the weighted adjacency random matrix, the weighted Laplacian and the
transition matrix of the random walk, then we present the conditions for a group
opinions consensus. Here we use the canonical graph symbol G(V, E) in which
V and F denote vertexes and edges respectively.

A weighted undirected graph G is defined as w : V x V. — R such that
w;; = wj;, if {4,7} ¢ E(G) then w;; = 0. In the context, the weighted degree
d; of a vertex i is defined as d; = >, wij, vol(G) = 3, d; denotes the volume
of the graph G. For a general weighted undirected graph G, the corresponding
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random walk is determined by transition probabilities p;; = Pr(zi1 = jloy =
i) = wj;/d;, which are independent of i. Clearly, for each vertex ¢ satisfies 0 <
pij < 1,>°,pij = 1, in other words, transition matrix P is row stochastic matrix.
In addition if for any j € V(G) satisfying Zj p;j = 1, then transition matrix P
is named double stochastic matrix.

In this study, based on random walk on a graph, with the aim to prove the
Friedkin and Johnsen’s social influence system conclusions rigorously, we define
transition matrix P on graph W' with entries p;; = Pr(zi41 = jlay = 1) =
W}, /d;, where dj = 3 w};, and matrix L as follows:

Lij = { —wj; if i and j are adjacent, (4)
0 otherwise.

where @f; € W is defined in Equations (2) and (3). Let T denote the diagonal

matrix with the (i,)-th entry having value d! as following

d ... ... 0
0dh.. 0

= oo (5)
0 ... d,

we set T~1(i,4) = 0 for c?f =0, and if (jﬁ = 0 we say ¢ is an isolated vertex. Then
the graph W*’s Laplacian matrix ¢ is defined to be the form ¢ = T—Y/2LT—1/2,
and each entry in ( is listed as following,

1- % ifi=jand d £0,

dt
P
Gij = 7\/ﬁ% if i and j are adjacent, (6)
0 otherwise.

Since ¢ is symmetric, its eigenvalues are all real and non-negative. Let the
eigenvalues of ¢ be {N;|i = 0 : N — 1} in increasing order of \;, such that
0 =X < A < ... < Ay_1. Furthermore, it is easy to check that transition
matrix P satisfies P = T~Y2(I — ¢)T'?, and 1TP = 1T, where 1 is unit
vector.

Definition 3. The random walk P™ is said to be irreducibility if for any i,j €
V', there exists some t such that pi; > 0. Definition 3 ensures the graph P™ is
strongly connected.

Definition 4. The random walk P™ is aperiodic if the greatest common divisor
of the lengths of its simple cycles is 1, i.e., ged{m : pI7 > 0} =1 for any state i.
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Definition 5. The random matrix P is said to be ergodic if there is an unique
n x 1 stationary distribution vector 7 satisfying lim P™(yM) =, where ' is
m— 00

the transpose operation.

Definition 6. The random matriz P is convergent if lim Pm(y(l))/ ezists, for
m— 00

any initial vectors beliefs y1).

The social influence exchange among the N agents may be represented by a
graph G(V, E,,,) with the set E, of edges given by E,, = {(i,7)[p}} > 0}. But
this condition is not sufficient to guarantee consensus of dynamic system (1) as
stated in Ref.[24]. This motivates the following stronger version Definition 7, as
addressed in Refs.[25,26].

Definition 7. (Bounded interconnectivity times). There is some B > 1 such
that for each nodes pairs (i,j) € Es, agent j sends his/her social impact
to neighbor i at least once at every B consecutive time slots, i.e. the graph
(G(P), B ..U E(myB—1)) 1s strongly connected. This condition is equivalent
to the requirement that there exists B > 1 such that (i,5) € EpJ ...\ Em+B-1
for all (i,j) € Es and m > 0.

Definition 5 is the well-known result that aperiodicity is necessary and suffi-
cient for convergence in the case where P is strongly connected. In other words,
the necessary conditions for the ergodicity of P are (i) irreducibility, (ii) aperi-
odicity, i.e., Def.5 is equivalent to Defs. 3 and 4. If Def.5 holds, Def.6 satisfies.

If a Markov chain is irreducible and aperiodic, i.e. Def.3 (or Def.3’s stronger
version Def.7) and Def.4 are both satisfied, or equivalently Def.5 holds, then
P converges to its corresponding steady distribution. This conclusion is fairly
easily verified by adapting theorems on steady-state distributions of Markov
chains, such as the proof provided in Ref.[27]. From another alternative, we will
prove this result by spectrum graph theorem in the following section.

For above Defs.3-7, we summarize the associated results in the following
Theorem 1, then we emphasize on consensus result proof and converge time
derivation.

Theorem 1. If P is a random matriz, the following are equivalent:

(i)P is aperiodic and irreducible.

(ii)P is ergodic.

(iii) P is convergent, there is a unique left eigenvector ps of P corresponding to
eigenvalue 1 whose entries sum to 1 such that, for every y(),

( lim P (yM)); = w(i), where  w(i) = (ps) (y)" for every i.

Both (i) and (ii) in Theorem 1 are the well-known results. Next we focus
on the proof of (iii) based on spectral graph theory. Theorem 1 presents the
conditions for the formation of opinions convergence.
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4 The Convergence of Opinions Profile on Random
Graph

In this section, with the above Defs. 3,4 or 7, we prove that the convergence of
group opinions over general weighted and undirected random graph are almost
surely. In addition, we prove the lower bounds on the convergence time t for
random walk P! to be close to its stationary distribution, given an arbitrary
initial distribution and small positive error e. We note that this proof is based
on spectrum graph theorem, which is different with Markov chains methods,
such as in [9,10,11,18].

Proof. In a random walk associated with a weighted connected graph G, the
transition matrix P satisfies 1T P = 1T , where 1 is the vector with all elements
are scalar 1. Therefore the stationary distribution is exactly m = 17'/vol(G).
We show that for any initial opinions profile distribution 3, when m is
large enough, P™y(!) converges to the stationary distribution 7 in the sense
of Ly or Euclidean norm. We write y)7T~1/2 = 3~ a;e;, where e; denotes the
orthonormal eigenfunction associated with \;. Because eg = 17'/2/,/vol(G) and

(1)p—1/2 1/2
< yM 1 >=1, ||.|| represents the L? norm, we have ay = =¥ ,ﬂlTl/,21||T Z =
L_ We then have
vol(G)

ly®™ P — 7| = |lyV P = 1T /vol(G)|| = [ly P™ — ageoT"/?||

= |lyWT2I = O™ TY? = ageo T2 = |1 Y (1= Xi)"aie; TV/2|

i#£0
. max; dt , max;/dt
< (1A )m;ﬁ < e ;Aj (7)
min/d5 mingy/d’
where
v 1= A > Ayog — 1
)2- AN_1, else.

Given any € > 0, for Equ.(7) we have

/3
max;4/d:
—m >\, J J

e v — = S €, (8)
min, d§

maz; dz)
€min; d; eminj\/dT;. '

With the symmetry of transition probability P™, we easily check that
lyD P — [ = [|(yO P =) || = [y P™) = x| = I(P™) (y) = =l| =
1P (™M) = |-

maxw/c’l\? /
then we have — YL < ™  so m > %log(
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. . N d .
With this we conclude that after m > [%log(%)] steps, the Lo dis-
emznj\/d>_7'
tance between Pm(y(l))/ and its stationary distribution 7" is at most e. Thus,
P™ converges to a matrix with all of whose rows are equal to the positive vec-

tor T = (m1, 72, ...y 7TN)/, when a consensus is formed in Friedkin and Johnsen’s
model. Accordingly, we have (thjglo y®); = Zfil Wiygl) almost surely with e

approximating error corresponding to ¢ updating steps.

In the herding example, there is consensus (of sorts), while which could
lead to the wrong outcome or misunderstandings (misdirections) for the whole
social group, such the “Mob phenomenon” of French revolution described by
Gustave LeBon. In this case, group consensus is equivalent to the unwis-
dom of crowds. If group consensus to be emerged at certain slot ¢t*, such that
y®) = % vazl y§1), for each j in a social group, we say that the society is wise,
i.e. each individual arrives the group average initial opinions profile.

One special case of the above theorem is when P is a double random matrix.
With this condition, the matrix has vector 1 as their common left eigenvec-
tor at all times, and therefore all the entries of the state vector converge to
(1/N)(1TyMH)1 = (1/N) Z;V:1 y§1)17 in other words, the mean of the initial N
individual’s opinion profile, with probability 1. This special case is addressed in
Ref.[28], we say this group is a wise social group, as introduced in Ref.[22].

5 Conclusions

In this study, from random walk aspects, we investigate the well-known Fried-
kin and Johnsen’s model. We define a weighted random walk P based on the
social influence matrix. If P satisfies ergodicity, i.e. aperiodic and irreducible,
Friedkin and Johnsen’s model converges to the average consensus of the initial
group opinions profile (the wise group decision making steady state) is almost
surely. Furthermore, we prove the lower bounds on the convergence time m for
random walk P™ to be close to its average consensus, given an arbitrary initial
distribution and a small positive error e.
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