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Abstract. In this paper, we propose a novel approach, based on en-
tropy and similarity measure of intuitionistic fuzzy sets, to determine
weights of the IFOWA operator. Then we define a new intuitionistic
fuzzy dependent OWA (IFDOWA) operator which is applied to handling
multi-attribute group decision making problem with intuitionistic fuzzy
information. Finally, an example is given to demonstrate the rationality
and validity of the proposed approach.
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1 Introduction

The ordered weighted aggregating (OWA) operator [26], as an important tool for
aggregating information, has been investigated and applied in many documents
[1, 11, 20, 27]. One critical issue of the OWA operator is to determine its asso-
ciated weights. Up to now, a lot of methods have been proposed to determine
the OWA weights. Xu [19] classified all those weight-determining approaches
into two categories: argument-independent approaches [6, 11, 14, 20, 23, 26] and
argument-dependent approaches [1, 7, 19, 21, 24, 25]. For the 1st category, Yager
[26] suggested an approach to compute the OWA weights based on linguistic
quantifiers provided by Zadeh [28, 29]. O’Hagan [11] defined degree of orness
and constructed a nonlinear programming to obtain the weights of OWA op-
erator. Xu [20] made an overview of methods for obtaining OWA weights and
developed a novel weight-determining method using the idea of normal distri-
bution. For the 2nd category, Filev and Yager [7] developed two procedures to
determine the weights of OWA operator. Xu and Da [21] established a linear
objective-programming model to obtain the OWA weights. Xu [19] proposed
a new dependent OWA operator which can relieve the influence of unfair ar-
guments on the aggregated results. In [24, 25], Yager and Filev developed an
argument-dependent method to generate the OWA weights with power function
of the input arguments.
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With the growing research of intuitionistic fuzzy set theory [2, 3] and the
expansion of its application, it is more and more important to aggregate intu-
itionistic fuzzy information effectively. Xu [18, 22] proposed some intuitionistic
fuzzy aggregation operators to aggregate the intuitionistic fuzzy information. In
[18], Xu pointed out that the the intuitionistic fuzzy OWA (IFOWA) weights can
be obtained similar to the OWA weights, such as the normal distribution based
method. However, the characteristics of the input arguments are not considered
in these methods.

In this paper, we investigate the IFOWA operator, and establish a new
argument-dependent method to determine the IFOWA weights. To do that, this
paper is organized as follows. Section 2 reviews the basic concepts about intu-
itionistic fuzzy information. In Section 3, a new argument-dependent approach
to obtain the IFOWA weights is proposed based on entropy and similarity mea-
sure. A intuitionistic fuzzy dependent OWA (IFDOWA) operator is developed
and its properties are studied. Section 4 provides a practical approach to solve
multi-attribute group decision making problem with intuitionistic fuzzy informa-
tion based on IFDOWA operator. The concluding remarks are given in Section
5.

2 Preliminaries

Some basic concepts of intuitionistic fuzzy sets, some operators, entropy and
similarity measures are reviewed.

2.1 The OWA operator and intuitionistic fuzzy sets

Definition 2.1 [26] Let (a1, a2, · · · , an) be a collection of numbers. An ordered
weighted averaging (OWA) operator is a mapping: Rn → R, such that

OWA(a1, a2, · · · , an) = w1aσ(1) + w2aσ(2) + · · ·+ wnaσ(n), (1)

where aσ(j) is the jth largest of aj(j = 1, 2, · · · , n), and w = (w1, w2, · · · , wn)T

is an associated vector of the operator with wj ∈ [0, 1] and
n∑
j=1

wj = 1.

Definition 2.2 [2, 3] Let X be a universe of discourse. An intuitionistic fuzzy
set (IFS) in X is an object with the form:

A = {
〈
x, µA(x), νA(x)

〉
|x ∈ X} (2)

where µA : X → [0, 1], νA : X → [0, 1] with the condition 0 ≤ µA(x) + νA(x) ≤
1,∀x ∈ X. The numbers µA(x) and νA(x) denote the degree of membership and
non-membership of x to A, respectively.

For each IFS A in X, we call πA(x) = 1 − µA(x) − νA(x) the intuitionistic
index of x in A, which denotes the hesitancy degree of x to A.
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For convenience, we call α = (µα, να) an intuitionistic fuzzy value (IFV) [22],
where µα ∈ [0, 1], να ∈ [0, 1], and µα + να ≤ 1. Let Θ be the universal set of
IFVs.

For comparison of IFVs, Chen and Tan [5] defined a score function while
Hong and Choi [8] defined an accuracy function. Based on the two functions, Xu
[22] provided a method to compare two intuitionistic fuzzy values (IFVs).

Definition 2.3 [22] Let α = (µα, να) and β = (µβ , νβ) be two IFVs, s(α) =
µα − να and s(β) = µβ − νβ be the score degrees of α and β, respectively;
h(α) = µα + να and h(β) = µβ + νβ be the accuracy degrees of α and β,
respectively. Then
(1) If s(α) < s(β), then α is smaller than β, denoted by α < β ;
(2) If s(α) = s(β), then

1)If h(α) = h(β), then α and β represent the same information, i.e., µα = µβ
and να = νβ , denoted by α = β ;

2) If h(α) < h(β), then α is smaller than β, denoted by α < β;
3) If h(α) > h(β), then α is bigger than β, denoted by α > β.

Definition 2.4 [18, 22] Let α = (µα, να) and β = (µβ , νβ) be two IFVs. Then
two operational laws of IFVs are given as follows:
(1) α = (να, µα);
(2) α⊕ β = (µα + µβ − µαµβ , νανβ);
(3) λα = (1− (1− µα)λ, νλα), λ ≥ 0;
(4) λ(α1 + α2) = λα1 + λα2;
(5) λ1α+ λ2α = (λ1 + λ2)α.

With the thorough research of intuitionistic fuzzy set theory and the con-
tinuous expansion of its application scope, it is more and more important to
aggregate intuitionistic fuzzy information effectively. Xu [22, 18] proposed some
intuitionistic fuzzy aggregation operators to aggregate the intuitionistic fuzzy
information.

Definition 2.5 [18] Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of
IFVs. An intuitionistic fuzzy weighted averaging (IFWA) operator is a mapping:
Θn → Θ, such that

IFWA(α1, α2, · · · , αn) = w1α1⊕w2α2⊕· · ·⊕wnαn =

1−
n∏
j=1

(1− µαj )wj ,
n∏
j=1

νwjαj


(3)

where w = (w1, w2, · · · , wn)T is the weighting vector of αi(i = 1, 2, · · · , n) with

wj ∈ [0, 1] and
n∑
j=1

wj = 1.

Definition 2.6 [18] Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of
IFVs. An intuitionistic fuzzy ordered weighted averaging (IFOWA) operator is
a mapping: Θn → Θ, such that

IFOWA(α1, α2, · · · , αn) = w1ασ(1) ⊕ w2ασ(2) ⊕ · · · ⊕ wnασ(n)
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=

1−
n∏
j=1

(1− µασ(j))
wj ,

n∏
j=1

νwjασ(j)

 (4)

where ασ(j) is the jth largest of αj(j = 1, 2, · · · , n), and w = (w1, w2, · · · , wn)T

is an associated vector of the operator with wj ∈ [0, 1] and
n∑
j=1

wj = 1.

2.2 Entropy and similarity measure for IFSs

Introduced by Burillo and Bustince [4], Intuitionistic fuzzy entropy is used to
estimate the uncertainty of an IFS. Szmidt and Kacprzyk [12] defined an entropy
measure ESK for an IFS. Wang and Lei [13] gave an entropy measure EWL:

ESK(A) =
1

n

n∑
i=1

maxCount(Ai ∩ACi )

maxCount(Ai ∪ACi )
, (5)

where Ai = {〈xi, µA(xi), νA(xi)〉} is a single element IFS,
Ai ∩ACi = {〈xi,min{µA(xi), νA(xi)}, max{µA(xi), νA(xi)}〉},
Ai ∪ ACi = {〈xi,max{µA(xi), νA(xi)},min{νA(xi), µA(xi)}〉}. For every IFS A,

maxCount(A) =
n∑
i=1

(µA(xi) + πA(xi)) is the biggest cardinality of A.

EWL(A) =
1

n

n∑
i=1

min {µA(xi), νA(xi)}+ πA(xi)

max {µA(xi), νA(xi)}+ πA(xi)
. (6)

Wei and Wang [16] proved that ESK and EWL are equivalent. For conve-
nience, we use the entropy measure EWL in the following.

Based on EWL, the entropy measure for an intuitionistic fuzzy value α =
(µα, να) can be given as:

E(α) =
min{µα, να}+ πα
max{µα, να}+ πα

. (7)

Similarity measure [9], another important topic in the theory of intuitionistic
fuzzy sets, is to describe the similar degree between two IFSs. Wei and Tang [15]
constructed a new similarity measure SWT for IFSs based on entropy measure
EWL.

SWT (A,B) =
1

n

n∑
i=1

1−min{|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|}
1 + max{|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|}

. (8)

Now we give a similarity measure between two IFVs α = (µα, να) and β =
(µβ , νβ) based on SWT :

S(α, β) =
1−min{|µα − µβ |, |να − νβ |}
1 + max{|µα − µβ |, |να − νβ |}

. (9)
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3 IFDOWA operator and its properties

In [18], Xu pointed out that the IFOWA weights can be determined similar-
ly to the OWA weights. For example, we can use the normal distribution based
method. However, those methods belong to the category of argument-independent
approaches. Here we develop an argument-dependent approach to determine the
IFOWA weights based on intuitionistic fuzzy entropy and similarity measure.

We suppose αj = (µαj , ναj )(j = 1, 2, · · · , n) is a collection of IFVs, (ασ(1),
ασ(2), · · · , ασ(n)) is a permutation of (α1, α2, · · · , αn) such that ασ(i) ≥ ασ(j) for
all i ≤ j. The weighting vector of IFOWA operator w = (w1, w2, · · · , wn)T is to

be determined, such that wj ∈ [0, 1] and
n∑
j=1

wj = 1.

During the information aggregating process, we usually expect that the un-
certainty degrees of arguments are as small as possible. Thus, the smaller uncer-
tainty degree of argument ασ(j), the bigger the weight wj . Conversely, the bigger
uncertainty degree of argument ασ(j), the smaller the weight wj . The uncertain-
ty degrees of arguments can be measured by Formula (7). Thus, the weighting
vector of the IFOWA operator can be defined as:

waj =
1− E(ασ(j))
n∑
j=1

[1− E(ασ(j))]
, j = 1, 2, · · · , n. (10)

In the following, we define the weighting vector of the IFOWA operator from
another viewpoint. In real-life situation, the arguments ασ(j)(j = 1, 2, · · · , n)
usually take the form of a collection of n preference values provided by n different
individuals. Some individuals may assign unduly high or unduly low preference
values to their preferred or repugnant objects. In such a case, we shall assign
very small weights to these “false” or “biased” opinions, that is to say, the more
similar an argument ασ(j) is to others, the bigger the weight wj . Conversely,
the less similar an argument ασ(j) is to others, the smaller the weights wj . The
similar degree between two arguments can be calculated by Formula (9).

Definition 3.1 Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of IFVs,
(ασ(1), ασ(2), · · · , ασ(n)) is a permutation of (α1, α2, · · · , αn) such that ασ(i) ≥
ασ(j) for all i ≤ j. Then the overall similarity degree between ασ(j) and other
arguments ασ(l)(l = 1, 2, · · · , n, l 6= j)is defined as:

S(ασ(j)) =
n∑
l=1
l 6=j

S(ασ(j), ασ(l)), j = 1, 2, · · · , n. (11)

So we define the weighting vector w = (w1, w2, · · · , wn)T of the IFOWA
operator as following:
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wbj =
S(ασ(j))
n∑
j=1

S(ασ(j))
, j = 1, 2, · · · , n. (12)

According to the above analysis, the weighting vector of the IFOWA operator
associates not only with wa, but also with wb. Thus, we use the linear weighting
method to derive the combined weighting vector of the IFOWA operator:

wj = λwaj + (1− λ)wbj , where λ ∈ [0, 1], j = 1, 2, · · · , n. (13)

Since
n∑
j=1

[1 − E(ασ(j))] =
n∑
j=1

[1 − E(αj)] and
n∑
j=1

S(ασ(j)) =
n∑
j=1

S(αj), For-

mula (10), (12) and (13) can be rewritten as:

waj =
1− E(ασ(j))
n∑
j=1

[1− E(αj)]
, j = 1, 2, · · · , n. (14)

wbj =
S(ασ(j))
n∑
j=1

S(αj)
, j = 1, 2, · · · , n. (15)

wj =
λ[1− E(ασ(j))]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(ασ(j))
n∑
j=1

S(αj)
, (16)

where λ ∈ [0, 1] j = 1, 2, · · · , n.

Definition 3.2 Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of IFVs. An
intuitionistic fuzzy dependent OWA (IFDOWA) operator is a mapping: Θn → Θ,
such that

IFDOWA(α1, α2, · · · , αn) = w1ασ(1) ⊕ w2ασ(2) ⊕ · · · ⊕ wnασ(n)

=

1−
n∏
j=1

(1− µασ(j))
wj ,

n∏
j=1

νwjασ(j)

 (17)

where (ασ(1), ασ(2), · · · , ασ(n)) is a permutation of (α1, α2, · · · , αn) such that
ασ(i) ≥ ασ(j) for all i ≤ j, w = (w1, w2, · · · , wn)T is the associated weighting
vector which can be calculated by Formula (16).

By Formula (16) and (17), we obtain

IFDOWA(α1, α2, · · · , αn) =
n
⊕
j=1

ασ(j)


λ[1− E(ασ(j))]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(ασ(j))
n∑
j=1

S(αj)


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=
n
⊕
j=1

αj


λ[1− E(αj)]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(αj)
n∑
j=1

S(αj)

 (18)

Yager [24] pointed that an OWA operator is called neat if the aggregated
value is independent of the ordering. Therefore, the IFDOWA operator is a neat
operator. By Formula (16) and (17), we can get the following properties.

Theorem 3.1 Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of IFVs,
(ασ(1), ασ(2),
· · · , ασ(n)) be a permutation of (α1, α2, · · · , αn) such that ασ(i) ≥ ασ(j) for all i ≤
j. Suppose E(ασ(j)) is the entropy of ασ(j) and S(ασ(j)) is the similarity degree
between ασ(j) and other arguments. If E(ασ(i)) ≤ E(ασ(j)) and S(ασ(i)) ≥
S(ασ(j)), then wi ≥ wj .

Theorem 3.2 Let αi = (µαi , ναi)(i = 1, 2, · · · , n) be a collection of IFVs. If
αi = αj , for all i, j, then wj = 1

n for all j.

Yager [26] further introduced two characterizing measures called dispersion
measure and orness measure, respectively, associated with the weighting vector
w of the OWA operator, where the dispersion measure of the aggregation is
defined as

disp(w) = −
n∑
j=1

wj lnwj , (19)

which measures the degree to which w takes into account the information in the
arguments during the aggregation. Particularly, if wj = 0 for any j, disp(w) = 0;
if w = ( 1

n ,
1
n , · · · ,

1
n )T , disp(w) = lnn.

The second one, the orness measure of the aggregation, is defined as

orness(w) =
1

n− 1

n∑
j=1

(n− j)wj , (20)

which lies in the unit interval [0, 1] and characterizes the degree to which the ag-
gregation is like an or operation. Particularly, if w = (1, 0, · · · , 0)T , orness(w) =
1; if w = ( 1

n ,
1
n , · · · ,

1
n ), disp(w) = 0.5; if w = (0, · · · , 0, 1)T , orness(w) = 0.

From Formulas (16), (19) and (20), it follows that

disp(w) = −
n∑
j=1


λ[1− E(ασ(j))]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(ασ(j))
n∑
j=1

S(αj)

 · (21)

ln


λ[1− E(ασ(j))]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(ασ(j))
n∑
j=1

S(αj)

 .
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orness(w) =
1

n− 1

n∑
j=1

(n− j) ·


λ[1− E(ασ(j))]
n∑
j=1

[1− E(αj)]
+

(1− λ)S(ασ(j))
n∑
j=1

S(αj)

 . (22)

Example 3.1 Let α1 = (0.2, 0.5), α2 = (0.4, 0.2), α3 = (0.5, 0.4), α4 =
(0.3, 0.5), α5 = (0.7, 0.1) be a collection of IFVs. The re-ordered argument
αj(j = 1, 2, 3, 4, 5) in descending order are ασ(1) = (0.7, 0.1), ασ(2) = (0.4, 0.2),
ασ(3) = (0.5, 0.4), ασ(4) = (0.3, 0.5), ασ(5) = (0.2, 0.5). Suppose λ = 0.5, by For-
mula (14), (15) and (16), we obtain wa = (0.3823, 0.1433, 0.0956, 0.1638, 0.2150),
wb = (0.1632, 0.2101, 0.2145, 0.2123, 0.1999). Thus
w = (0.27275, 0.17670, 0.15505, 0.18805, 0.20745).

By Formulas (19) and (20), we have

disp(w) = −
5∑
j=1

wj lnwj = 1.5902.

orness(w) =
1

5− 1

5∑
j=1

(5− j)wj = 0.3609.

By Formulas (17) and (18), we have IFDOWA(α1, α2, α3, α4, α5) =
(0.4724, 0.2648). Therefore, the collective argument is (0.4724, 0.2648).

4 The application of IFDOWA operator in multi-attribute
group decision

In this section, we apply the IFDOWA operator to multi-attribute group decision
making problem which can be described as follows.

We suppose X = {x1, x2, · · · , xn} is a set of evaluation alternatives, D =
{d1, d2, · · · , ds} is a set of decision makers, U = {u1, u2, · · · , um} is an attribute
set, and v = (v1, v2, · · · , vm)T is a weighting vector of attributes such that vj ∈

[0, 1] and
m∑
j=1

vj = 1. Let R(k) =
(
r
(k)
ij

)
n×m

(k = 1, 2, · · · , s) be intuitionistic

fuzzy decision matrices, where r
(k)
ij = (µ

(k)
ij , ν

(k)
ij ) is an IFV and provided by the

decision maker dk ∈ D for the alternative xi ∈ X with respect to the attribute
uj ∈ U .

Based on the IFWA operator and the IFDOWA operator, we rank the alter-
natives xi(i = 1, 2, · · · , n) by the following steps:
Step 1. Utilize the IFWA operator to derive the individual overall aggregated

values z
(k)
i (i = 1, 2, · · · , n, k = 1, 2, · · · , s) of the alternatives xi(i = 1, 2, · · · , n)

by decision makers dk(k = 1, 2, · · · , s), where

z
(k)
i = IFWAv(r

(k)
i1 , r

(k)
i2 , · · · , r

(k)
im ) = v1r

(k)
i1 ⊕ v2r

(k)
i2 ⊕ · · · ⊕ vmr

(k)
im , (23)
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where v = (v1, v2, · · · , vm)T is the weighting vector of the attributes of uj(j =

1, 2, · · · ,m), with vj ∈ [0, 1] and
m∑
j=1

vj = 1.

Step 2. Utilize the IFDOWA operator to derive the overall aggregated values
zi(i = 1, 2, · · · , n) of the alternatives xi(i = 1, 2, · · · , n), where

zi = IFDOWAw(z
(1)
i , z

(1)
i , z

(2)
i , · · · , z(s)i ) = w

(i)
1 z

σ(1)
i ⊕w(i)

2 z
σ(2)
i ⊕ · · · ⊕w(i)

s z
σ(s)
i ,
(24)

where w(i) = (w
(i)
1 , w

(i)
2 , · · · , w(i)

s )(i = 1, 2, · · · , n) are calculated by Formula (16).

Step 3. Utilize the Definition 2.2 to compare the overall aggregated values
zi(i = 1, 2, · · · , n) and rank the alternatives xi(i = 1, 2, · · · , n).

We adopt the example used in [10] and [17] to illustrate the proposed ap-
proach.

Example 4.1 The information management steering committee of Midwest
American Manufacturing Corp. must prioritize for development and implementa-
tion a set of six information technology improvement projects xi(i = 1, 2, · · · , 6),
which have been proposed by area managers. The committee is concerned that
the projects are prioritized from highest to lowest potential contribution to the
firm’s strategic goal of gaining competitive advantages in the industry. In as-
sessing the potential contribution of each project, three factors are considered,
u1: productivity, u2: differentiation, and u3: management, whose weight vector
is v = (0.35, 0.35, 0.30). Suppose that there are four decision makers dk(k =

1, 2, 3, 4). They provided their preferences with IFVs r
(k)
ij = (µ

(k)
ij , ν

(k)
ij )(i =

1, 2, · · · , 6, j = 1, 2, 3) over the projects xi(i = 1, 2, · · · , 6) with respect to the
factors uj(j = 1, 2, 3), which are listed as follows:

R(1) =


(0.3, 0.2) (0.6, 0.1) (0.5, 0.2)
(0.5, 0.1) (0.3, 0.2) (0.4, 0.2)
(0.4, 0.3) (0.5, 0.2) (0.3, 0.1)
(0.3, 0.1) (0.5, 0.3) (0.3, 0.2)
(0.4, 0.3) (0.5, 0.3) (0.4, 0.2)
(0.5, 0.4) (0.2, 0.1) (0.3, 0.2)

 R(2) =


(0.5, 0.3) (0.2, 0.1) (0.3, 0.3)
(0.3, 0.1) (0.5, 0.3) (0.4, 0.2)
(0.3, 0.4) (0.4, 0.3) (0.3, 0.1)
(0.5, 0.3) (0.6, 0.3) (0.5, 0.2)
(0.5, 0.3) (0.3, 0.2) (0.3, 0.2)
(0.5, 0.3) (0.4, 0.3) (0.2, 0.1)



R(3) =


(0.4, 0.2) (0.5, 0.1) (0.5, 0.3)
(0.4, 0.1) (0.6, 0.3) (0.5, 0.2)
(0.2, 0.2) (0.3, 0.1) (0.5, 0.3)
(0.5, 0.4) (0.6, 0.2) (0.3, 0.1)
(0.6, 0.3) (0.5, 0.2) (0.6, 0.2)
(0.4, 0.2) (0.3, 0.1) (0.5, 0.1)

 R(4) =


(0.3, 0.1) (0.5, 0.4) (0.4, 0.3)
(0.5, 0.2) (0.4, 0.3) (0.7, 0.1)
(0.6, 0.1) (0.4, 0.2) (0.2, 0.1)
(0.3, 0.2) (0.5, 0.3) (0.3, 0.2)
(0.4, 0.3) (0.3, 0.1) (0.2, 0.2)
(0.3, 0.1) (0.5, 0.2) (0.4, 0.3)



Step 1. Utilize the IFWA operator to derive the individual overall aggregated
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values z
(k)
i (i = 1, 2, · · · , 6, k = 1, 2, 3, 4) of the alternatives xi(i = 1, 2, · · · , 6) by

decision makers dk(k = 1, 2, 3, 4):

z
(1)
1 = (0.4798, 0.1569), z

(1)
2 = (0.4059, 0.1569), z

(1)
3 = (0.4104, 0.1872),

z
(1)
4 = (0.3778, 0.1808), z

(1)
5 = (0.4371, 0.2656), z

(1)
6 = (0.3480, 0.2000),

z
(2)
1 = (0.3480, 0.2042), z

(2)
2 = (0.4059, 0.1808), z

(2)
3 = (0.3368, 0.2386),

z
(2)
4 = (0.5376, 0.2656), z

(2)
5 = (0.3778, 0.2305), z

(2)
6 = (0.3864, 0.2158),

z
(3)
1 = (0.4671, 0.1772), z

(3)
2 = (0.5071, 0.1808), z

(3)
3 = (0.3369, 0.1772),

z
(3)
4 = (0.4884, 0.2071), z

(3)
5 = (0.5675, 0.2305), z

(3)
6 = (0.4004, 0.1275),

z
(4)
1 = (0.4059, 0.2259), z

(4)
2 = (0.5428, 0.1872), z

(4)
3 = (0.4325, 0.1275),

z
(4)
4 = (0.3778, 0.2305), z

(4)
5 = (0.3097, 0.1808), z

(4)
6 = (0.4059, 0.1772).

Step 2. Utilize the IFDOWA operator to derive the overall aggregated values
zi(i = 1, 2, · · · , 6) of the alternatives xi(i = 1, 2, · · · , 6), where λ = 0.5:

z1 = IFDOWAw(1)(z
(1)
1 , z

(2)
1 , z

(3)
1 , z

(4)
1 ) = (0.4352, 0.1859),

z2 = IFDOWAw(2)(z
(1)
2 , z

(2)
2 , z

(3)
2 , z

(4)
2 ) = (0.4747, 0.1767),

z3 = IFDOWAw(3)(z
(1)
3 , z

(2)
3 , z

(3)
3 , z

(4)
3 ) = (0.3877, 0.1722),

z4 = IFDOWAw(4)(z
(1)
4 , z

(2)
4 , z

(3)
4 , z

(4)
4 ) = (0.4581, 0.2202),

z5 = IFDOWAw(5)(z
(1)
5 , z

(2)
5 , z

(3)
5 , z

(4)
5 ) = (0.4513, 0.2273),

z6 = IFDOWAw(6)(z
(1)
6 , z

(2)
6 , z

(3)
6 , z

(4)
6 ) = (0.3876, 0.1737).

Step 3. Utilize the score function to calculate the scores s(zi)(i = 1, 2, · · · , 6) of
overall aggregated values zi(i = 1, 2, · · · , 6) of the alternatives xi(i = 1, 2, · · · , 6):

s(z1) = 0.2493, s(z2) = 0.2980, s(z3) = 0.2155,

s(z4) = 0.2379, s(z5) = 0.2240, s(z6) = 0.2139.

Use the scores s(zi)(i = 1, 2, · · · , 6) to rank the alternatives xi(i = 1, 2, · · · , 6),
we obtain

x2 � x1 � x4 � x5 � x3 � x6.
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5 Concluding

In this paper, we propose a new argument-dependent approach, based on entropy
and similarity measure, to determine the OWA weights. we apply the IFDOWA
operator to a multi-attribute group decision making problem and illustrate the
effectiveness of the approach. It is worth noting that the results in this paper
can be further extended to interval-valued intuitionistic fuzzy environment.
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