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In this paper, we study group decision-making problems based on intuitionistic pref-
erence relations. By measuring the uncertain information of intuitionistic preference
relations and the average similarity degree of one individual intuitionistic preference
relation to the others, we propose a new approach to assess the relative importance
weights of experts. The approach takes both the objective and subjective information of
experts into consideration. We then integrate the weights of experts into the individual
intuitionistic preference relations and develop a relative similarity method to derive the
priorities of alternatives. The comparison analysis with other methods by two numerical
examples illustrates the practicality and effectiveness of the proposed methods.
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1. Introduction

Intuitionistic fuzzy sets (IFSs),1 characterized by membership functions and
nonmembership functions, have been applied in many fields, such as decision-
making,2–13 medical diagnosis,14 and pattern recognition.15,16 In group decision-
making problems based on IFSs, Szimidt and Kacprzyk3–5 investigated the extent
of agreement in a group of experts (individuals) as the individual preferences
are described by intuitionistic fuzzy preference relations. They gave a method to
aggregate the individual intuitionistic fuzzy preference relations into a collective
intuitionistic fuzzy preference relation, while the alternatives are not ranked.6 We
know that the intuitionistic fuzzy preference relations given in Refs. 3–5 consist of
three types of matrices. Xu9 combined the three types of matrices into one matrix
and proposed the concept of an intuitionistic preference relation. He developed
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an approach to group decision-making based on intuitionistic preference relations,
where an intuitionistic fuzzy arithmetic averaging operator and an intuitionistic
fuzzy weighted arithmetic averaging operator are used to aggregate intuitionistic
preference information.

Among most of those literatures on group decision-making problems, the impor-
tance weights of experts are usually predetermined by the experts’ social status and
competence recognized by their domain fields, etc., which are usually regarded as
the given parameters. In this paper, such kind of given weights are referred to as
the subjective weights of experts. During the decision-making process, the prefer-
ences over those alternatives, provided by the experts, also reflect their practical
knowledge toward those alternatives, and are worth contributing some information
toward the importance weights of the experts. Then it is quite interesting to study
how to derive the weights of experts, referred to as the objective weights of experts
in this paper, from their corresponding intuitionistic preference relations, which
describe the experts’ preference information about each pair of alternatives. An
approach to assess the objective weights of experts is studied in this paper by using
some information measure tools — entropy and similarity measures of IFSs.

As two important topics in the theory of fuzzy sets, both entropy and similar-
ity measures of IFSs have been investigated widely from different points of view.
Burillo and Bustince17 introduced the notions of entropy of interval value fuzzy set
(IVFS) and IFS to measure the degree of intuitionism of an IVFS or IFS. Szimidt
and Kacprzyk18 proposed a nonprobabilistic-type entropy with a geometric inter-
pretation of IFSs. Hung and Yang19 gave their axiom definitions of entropies of IFS
and IVFS by exploiting the concept of probability. After that, many authors also
proposed different entropy formulas for IFSs,15,20 IVFSs,21–23 interval type-2 fuzzy
sets (IT2 FS),24 and vague sets.25–27

The similarity measures of IFSs are used to estimate the degree of similarity
between two IFSs. Li and Cheng28 defined the notion of the degree of similarity
between IFSs, and introduced several similarity measures between IFSs. Mitchell29

made some modification to those of Li and Cheng.28 Szmidt and Kacprzyk7 defined
a similarity measure using a distance measure, which involves both similarity and
dissimilarity. Xu30 gave a comprehensive overview of similarity measures of IFSs and
defined some continuous similarity measures based on different distance measures.
Li et al.31 made a comparative analysis of similarity measures of IFSs. On the
similarity measures for IVFSs, IT2 FSs, and vague sets, we can refer to Refs. 23
and 32–37.

On the relationship between entropy and similarity measures, it has already
been proved that similarity measures for IVFSs can be transformed by entropy
measures of IVFSs.21–23 Motivated by the above-mentioned studies, in this paper,
we propose a new similarity measure for IFSs, which is based on the argument about
the relationship among the entropy formulas defined in Refs. 18, 20 and 26 and a
transformation of entropy measures into similarity measures of IFSs. Then, by the
entropy and similarity measures of intuitionistic preference relations, we propose an
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approach to assess the weights of experts and develop a relative similarity method
to rank the alternatives.

The rest of the paper is organized as follows. Section 2 proves that three entropy
formulas of IFSs given in Refs. 18, 20 and 26, respectively, are the same, and also
presents an effective similarity measure for IFSs by a transformation of entropy
measures into similarity measures. Section 3 introduces an approach to determine
the weights of experts by their subjective and objective weights, and proposes a
relative similarity method to rank the alternatives. Two examples on group decision-
making problems are shown to illustrate the effectiveness and reasonability of the
proposed methods by comparisons with others. Section 4 gives the conclusions.

2. Preliminaries

2.1. Intuitionistic fuzzy entropy

In this subsection, we review some entropy formulas and discuss their relations.

Definition 1.1 Let X be a universe of discourse. An intuitionistic fuzzy set in X

is an object having the form:

A = {〈x, uA(x), vA(x)
〉 |x ∈ X}, (1)

where the mappings

uA : X → [0, 1] and vA : X → [0, 1]

satisfy the condition

0 ≤ uA(x) + vA(x) ≤ 1, ∀x ∈ X.

The numbers uA(x) and vA(x) denote the degree of membership and nonmember-
ship of x to A, respectively.

For convenience of notations, we abbreviate “intuitionistic fuzzy set” to IFS,
and denote by IFS(X) the set of all IFSs in X .

For each IFS A in X , we call 1 − uA(x) − vA(x), denoted by πA(x), the intu-
itionistic index of x in A, which denotes the hesitancy degree of x to A.14

Definition 2.1 For two IFSs A = {〈x, uA(x), vA(x)〉 |x ∈ X} and B = {〈x, uB(x),
vB(x)〉 |x ∈ X}, their relations and operations are defined as follows:

(1) A ⊆ B if and only if uA(x) ≤ uB(x), vA(x) ≥ vB(x), for each x ∈ X ;
(2) A = B if and only if A ⊆ B and B ⊆ A;
(3) AC = {〈x, vA(x), uA(x)〉 |x ∈ X}.

In the following, we assume that the universe X is a finite set, listed by
{x1, x2, . . . , xn}.
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Szmidt and Kacprzyk18 extended the axioms for fuzzy sets proposed by De
Luca and Termini39 to introduce the concept of entropy for IFSs, and proposed a
nonprobabilistic-type entropy.

Definition 3.18 A real-valued function E: IFS(X) → [0, 1] is called an entropy
measure on IFS(X) if it satisfies the following axiomatic requirements:

(E1) E(A) = 0 if and only if A is a crisp set;
(E2) E(A) = 1 if and only if uA(xi) = vA(xi) for each xi in X ;
(E3) E(A) = E(AC);
(E4) E(A) ≤ E(B) if uA(xi) ≥ uB(xi) and vB(xi) ≥ vA(xi) for uB(xi) ≥ vB(xi),

or uA(xi) ≤ uB(xi) and vB(xi) ≤ vA(xi) for uB(xi) ≤ vB(xi) for any xi ∈ X .

We call E(A) the entropy of A for each A in IFS(X).

For each IFS A = {xi, uA(xi), vA(xi) |xi ∈ X}, Szmidt and Kacprzyk18 defined
the following two kinds of cardinalities of A: the least cardinality or min-sigma-
count of A given by

min
∑

count(A) =
n∑

i=1

uA(xi), (2)

and the biggest cardinality or max-sigma-count of A given by

max
∑

count(A) =
n∑

i=1

(uA(xi) + πA(xi)). (3)

Using these two cardinalities, Szmidt and Kacprzyk18 an entropy measure ESK(A)
of an IFS A as

ESK(A) =
1
n

n∑
i=1

max count(Ai ∩ AC
i )

max count(Ai ∪ AC
i )

, (4)

where, for each i, Ai denotes the single-element IFS corresponding to the element
xi in X , described as Ai = {〈xi, uA(xi), vA(xi)〉}, and

Ai ∩ AC
i = {〈xi, min{uA(xi), vA(xi)}, max{vA(xi), uA(xi)}〉}, (5)

Ai ∪ AC
i = {〈xi, max{uA(xi), vA(xi)}, min{vA(xi), uA(xi)}〉}. (6)

Remark 1. Since both Ai ∩ AC
i and Ai ∪ AC

i contain only one element, the
biggest cardinalities of Ai ∩ AC

i and Ai ∪ AC
i defined by (3) are reduced to

max count(Ai ∩ AC
i ) and max count(Ai ∪ AC

i ), respectively.

After the work of Szmidt and Kacprzyk,18 Wang and Lei20 gave a different
entropy formula by

EWL(A) =
1
n

n∑
i=1

min{uA(xi), vA(xi)} + πA(xi)
max{vA(xi), uA(xi)} + πA(xi)

. (7)
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Note that, Huang and Liu26 introduced a fuzzy entropy for a vague set proposed by
Gau and Buehrer.39 Using the fact of the equivalence of two theories of vague sets
and IFSs proved by Bustince and Burillo,40 we can transform the fuzzy entropy
formula for a vague set in Ref. 26 to an entropy formula for an IFS A by the
following equation:

EHL(A) =
1
n

n∑
i=1

1 − |uA(xi) − vA(xi)| + πA(xi)
1 + |uA(xi) − vA(xi)| + πA(xi)

. (8)

The entropy formulas (4), (7) and (8) are introduced from different points of
view. Comparing the three formulas, we get the following theorem.

Theorem 1. For each IFS A = {〈x, uA(x), vA(x)〉 |x ∈ X}, ESK(A) =
EWL(A) = EHL(A).

Proof. Since

Ai ∩ AC
i = {〈xi, min{uA(xi), vA(xi)}, max{vA(xi), uA(xi)}〉}

and

Ai ∪ AC
i = {〈xi, max{uA(xi), vA(xi)}, min{vA(xi), uA(xi)}〉},

we can get that

ESK(A) =
1
n

n∑
i=1

max count(Ai ∩ AC
i )

max count(Ai ∪ AC
i )

=
1
n

n∑
i=1

min{uA(xi), vA(xi)} + πA(xi)
max{uA(xi), vA(xi)} + πA(xi)

= EWL(A).

Suppose uA(xi) ≥ vA(xi). Then

EHL(A) =
1
n

n∑
i=1

1 − |uA(xi) − vA(xi)| + πA(xi)
1 + |uA(xi) − vA(xi)| + πA(xi)

=
1
n

n∑
i=1

1 − uA(xi) + vA(xi) + πA(xi)
1 + uA(xi) − vA(xi) + πA(xi)

=
1
n

n∑
i=1

vA(xi) + πA(xi)
uA(xi) + πA(xi)

=
1
n

n∑
i=1

min{uA(xi), vA(xi)} + πA(xi)
max{vA(xi), uA(xi)} + πA(xi)

= EWL(A).

Similarly, when uA(xi) ≤ vA(xi), we can also obtain the same conclusion that
EWL(A) = EHL(A).
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In the next subsection, we construct a similarity measure for IFSs by using the
entropy measure EWL.

2.2. A similarity measure for IFSs

Definition 4.16,30 A real-valued function S : IFS(X) × IFS(X) → [0, 1] is called a
similarity measure on IFS(X), if it satisfies the following axiomatic requirements:

(S1) 0 ≤ S(A, B) ≤ 1;
(S2) S(A, B) = 1 if and only if A = B;
(S3) S(A, B) = S(B, A);
(S4) If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).

Zeng and Li21 investigated the relationship between similarity measures and
entropy measures of IVFSs. By the equivalence of IVFSs and IFSs,41,42 we introduce
a transforming method by which one can set up a similarity measure for IFSs based
on an entropy measure.

For A and B in IFS(X), let

uM(A,B)(xi) =
1 + min{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|}

2
, (9)

vM(A,B)(xi) =
1 − max{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|}

2
. (10)

Then we define M(A, B) = {〈xi, uM(A,B)(xi), vM(A,B)(xi)〉|xi ∈ X}. Obviously,
M(A, B) is an IFS. From Ref. 21 and the relationship of IVFs and IFSs, it is
easy to get the following theorem.

Theorem 2. Suppose that E is an entropy measure on IFS(X). Then
E(M(A, B)), for each pair of IFSs A and B, is a similarity measure on IFS(X).

Corollary 1. Let E be the entropy measure defined by

EWL(A) =
1
n

n∑
i=1

min{uA(xi), vA(xi)} + πA(xi)
max{vA(xi), uA(xi)} + πA(xi)

for A ∈ IFS(X).

Then the function S defined by

S(A, B) =
1
n

n∑
i=1

1 − min{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|}
1 + max{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|}

for A, B ∈ IFS(X), (11)

is a similarity measure on IFS(X).

Considering the elements in the universe may have different importance, here
we define the weighted form of formula (11).
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Let ω = (ω1, ω2, . . . , ωn) be a weighting vector with ωi ≥ 0 and
∑n

i=1 ωi = 1 of
the elements xi (i = 1, 2, . . . , n). The weighted similarity measure is defined as

S(A, B) =
n∑

i=1

ωi
1 − min{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|}
1 + max{|uA(xi) − uB(xi)|, |vA(xi) − vB(xi)|} . (12)

Obviously, when ω = ( 1
n , 1

n , . . . , 1
n )T , formula (12) is reduced to formula (11).

3. Group Decision Making Based on Intuitionistic
Preference Relations

In this section, the entropy and similarity measure of IFSs are applied to determine
the weights of experts and rank the alternatives for group decision-making problems
based on intuitionistic preference relations.

3.1. Intuitionistic preference relations

During the decision-making process, an expert is usually required to provide his/her
preferences over the alternatives. The expert may provide his/her judgments in a
certain way while sometimes he/she is not quite confident of those judgments. Thus,
it is appropriate to express the expert’s preference values with intuitionistic fuzzy
values rather than the numerical values.2,6,9 Szmidt and Kacprzyk6–8 first gener-
alized the fuzzy preference relation to the intuitionistic fuzzy preference relation
consisting of three types of matrices. Later, by combining the three types of matri-
ces into one matrix, Xu9,10 introduced the concept of an intuitionistic preference
relation.

Definition 5.9 An intuitionistic preference relation R on the set X is repre-
sented by a matrix R = (rij)n×n with rij = 〈(xi, xj), u(xi, xj), v(xi, xj)〉 for all
i, j = 1, 2, . . . , n. For convenience, for all i, j, we let rij = (uij , vij), where rij is
an intuitionistic fuzzy value consisting of the certainty degree uij to which xi is
preferred to xj and the certainty degree vij to which xi is nonpreferred to xj , and
uij , vij satisfy the following characteristics:

0 ≤ uij + vij ≤ 1, uji = vij , vji = uij , uii = vii = 0.5 for all i, j = 1, 2, . . . , n.

πij = 1 − uij − vij is interpreted as the uncertainty degree to which xi is preferred
to xj .

Next we discuss how to acquire more information from the experts’ preferences
over the alternatives so as to adjust the given importance weights of experts for
more reasonable decision-making.

3.2. A method to determine the weights of experts

The group decision-making problem considered in this paper can be described as
follows: let X = {x1, x2, . . . , xn} be the set of alternatives, E = {e1, e2, . . . , em}
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be the set of experts. The expert ek provides his/her preference information
for each pair of alternatives, and constructs an intuitionistic preference relation
R(k) = (r(k)

ij )n×n, where r
(k)
ij = (u(k)

ij , v
(k)
ij ), 0 ≤ u

(k)
ij + v

(k)
ij ≤ 1, u

(k)
ji = v

(k)
ij ,

v
(k)
ji = u

(k)
ij , u

(k)
ii = v

(k)
ii = 0.5 for all i, j = 1, 2, . . . , n.

For the group decision-making problem based on intuitionistic preference rela-
tions, the integration of the individual intuitionistic preference relations into a col-
lective intuitionistic preference relation is expected. The relative importance weights
of experts need to be incorporated into each individual intuitionistic preference rela-
tion and affect the aggregating result.

In reality, the weights of experts are related to their social positions or prestige,
competence recognized for specific domains, etc. and are often predetermined for
a group decision-making problem. However, the experts’ judgments, such as intu-
itionistic preference relations generated during the problem solving process, may not
always be considered even those fresh information reflects their actual knowledge on
the alternatives. As the weights may play a dominant role toward the final ranking
of the alternatives, then how to assign reasonable weights toward the experts dur-
ing the practical decision-making process is an issue. In this paper, the predefined
weights of the experts’ importance are regarded as one kind of subjective weights
of the experts. Compared with the predefined weights, the intuitionistic preference
relations which express the experts’ preference information may reflect their real
understandings toward the alternatives in a more objective sense, then the weights
of experts derived from their corresponding intuitionistic preference relations are
referred as the objective weights of experts. How to obtain the reasonable objective
weights of experts? Next, we propose an approach to assess the objective weights
of experts using entropy and similarity measures of IFSs.

The entropy can measure the uncertain information of an IFS. Each intuition-
istic preference relation R(k) (k = 1, 2, . . . , m) is actually an IFS in X × X , hence
we can measure its uncertain information by using the entropy measure defined
by formula (7). During the decision-making process, we usually expect the uncer-
tainty degree of the intuitionistic preference relation as small as possible for more
certainty of the achieved results. Thus, the bigger the entropy of R(k), the smaller
the weight given to the corresponding expert ek. On the other hand, the similarity
degree S(R(k), R(l)) between any two individual intuitionistic preference relations
R(k) and R(l) can be measured by formula (11). Then the average similarity degree
of R(k) to the others can be calculated; the bigger the value, the larger the weight
given to the expert ek.

According to the above analysis, we develop the following Algorithm I to assess
the objective weights of the experts.

Algorithm I
For the group decision-making problems based on intuitionistic fuzzy preference
relations, we let w1 = (w1

1 , w1
2, . . . , w

1
m) be a subjective weighting vector of experts,

where w1
k > 0, k = 1, 2, . . . , m,

∑m
i=1 w1

i = 1.
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Step 1. Calculate the entropy EWL(R(k)) of R(k):

EWL(R(k)) =
1
n2

n∑
i=1

n∑
j=1

min{u(k)
ij , v

(k)
ij } + π

(k)
ij

max{u(k)
ij , v

(k)
ij } + π

(k)
ij

, k = 1, 2, . . . , m. (13)

Since u
(k)
ji = v

(k)
ij , v

(k)
ji = u

(k)
ij , u

(k)
ii = v

(k)
ii = 0.5 for all i, j = 1, 2, . . . , n, we have

EWL(R(k)) =
1
n

+
2
n2

n∑
i=1

n∑
j=i+1

min{u(k)
ij , v

(k)
ij } + π

(k)
ij

max{u(k)
ij , v

(k)
ij } + π

(k)
ij

, k = 1, 2, . . . , m. (14)

Step 2. Calculate the weight wa
k , determined by EWL(R(k)), of the expert ek:

wa
k =

1 − EWL(R(k))∑m
i=1(1 − EWL(R(i)))

, k = 1, 2, . . . , m. (15)

Step 3. Calculate the similarity measure S(R(k), R(l)) between R(k) and R(l) for
each k �= l:

S(R(k), R(l)) =
1
n2

n∑
i=1

n∑
j=1

1 − min{|u(k)
ij − u

(l)
ij |, |v(k)

ij − v
(l)
ij |}

1 + max{|u(k)
ij − u

(l)
ij |, |v(k)

ij − v
(l)
ij |}

. (16)

Obviously,

S(R(k), R(l)) =
1
n

+
2
n2

n∑
i=1

n∑
j=i+1

1 − min{|u(k)
ij − u

(l)
ij |, |v(k)

ij − v
(l)
ij |}

1 + max{|u(k)
ij − u

(l)
ij |, |v(k)

ij − v
(l)
ij |}

. (17)

Then the average similarity degree S(R(k)) of R(k) to the others is calculated by

S(R(k)) =
1

m − 1

m∑
l=1,l �=k

S(R(k), R(l)), k = 1, 2, . . . , m. (18)

Step 4. Calculate the weight wb
k determined by S(R(k)) of the expert ek:

wb
k =

S(R(k))∑m
i=1 S(R(i))

, k = 1, 2, . . . , m. (19)

Step 5. Calculate the objective weight w2
k of the expert ek:

w2
k = ηwa

k + (1 − η)wb
k, η ∈ [0, 1], k = 1, 2, . . . , m. (20)

Step 6. Integrate the subjective weight w1
k and the objective weight w2

k into the
weight wk of the expert ek:

wk = γw1
k + (1 − γ)w2

k, γ ∈ [0, 1], k = 1, 2, . . . , m. (21)
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From Algorithm I, the weights of experts consider both the subjective and
objective information. The decision-maker determines the value of γ according to
his/her preferences to the objective and subjective weight information. We then
integrate the individual intuitionistic preference relations into a collective intu-
itionistic preference relation by using the following theorem given by Ref. 10.

Theorem 3.10 Let R(k) = (r(k)
ij )n×n (k = 1, 2, . . . , m) be m intuitionistic

fuzzy preference relations given by the experts ek, k = 1, 2, . . . , m, and w =
(w1, w2, . . . , wn) be a weighting vector of experts, where r

(k)
ij = (u(k)

ij , v
(k)
ij ), wk >

0, k = 1, 2, . . . , m,
∑m

i=1 wi = 1. Then the aggregation R = (rij)n×n of R(k) =
(r(k)

ij )n×n (k = 1, 2, . . . , m) is also an intuitionistic preference relation, where

rij = (uij , vij), uij =
m∑

k=1

wku
(k)
ij , vij =

m∑
k=1

wkv
(k)
ij , for all i, j = 1, 2, . . . , n.

3.3. A relative similarity method to rank the alternatives

The ith row vector {(uij, vij)|j = 1, 2, . . . , n} (i = 1, 2, . . . , n) of a collective intu-
itionistic preference relation R, denoted by Ri, describes the pairwise compari-
son preference of the ith alternative xi over all the alternatives in X , and can be
regarded as an IFS in {xi} × X . Let x+ and x− be the positive ideal alterna-
tive and negative ideal alternative, respectively. Suppose the intuitionistic fuzzy
sets R+ = {(1, 0), (1, 0), . . . , (1, 0)} and R− = {(0, 1), (0, 1), . . . , (0, 1)} describe the
pairwise comparison preference of x+ and x− over all the alternatives in X , respec-
tively. Then the best alternative is acquired to have the degree of similarity to x+

as big as possible and have the degree of similarity to x− as small as possible. Thus
we can rank the alternatives from the collective preference relation by using the fol-
lowing relative similarity method: Algorithm II. Assume that R(k) (k = 1, 2, . . . , m)
and w are defined as before.

Algorithm II

Step 1. Calculate the collective intuitionistic preference relation R = (rij)n×n by

rij = (uij , vij) =

(
m∑

k=1

wku
(k)
ij ,

m∑
k=1

wkv
(k)
ij

)
, i, j = 1, 2, . . . , n. (22)

Step 2. For each alternative xi, calculate the similarity measure S(Ri, R+) between
Ri and R+ and the similarity measure S(Ri, R−) between Ri and R− by formula
(11). Then

S(Ri, R+) =
1
n

n∑
j=1

1 − min{|uij − 1|, |vij − 0|}
1 + max{|uij − 1|, |vij − 0|} =

1
n

n∑
j=1

1 − min{1 − uij , vij}
1 + max{1 − uij , vij}

(23)
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and

S(Ri, R−) =
1
n

n∑
j=1

1 − min{|uij − 0|, |vij − 1|}
1 + max{|uij − 0|, |vij − 1|} =

1
n

n∑
j=1

1 − min{uij , 1 − vij}
1 + max{uij , 1 − vij} .

(24)

Step 3. For each alternative xi, calculate its evaluation value

f(xi) =
S(Ri, R+)

S(Ri, R+) + S(Ri, R−)
. (25)

The larger the value of f(xi), the better the alternative xi. Then the rank of
the alternatives is acquired. The following two examples are given to show how to
achieve the integrated weights by Algorithm I and how to rank the alternatives by
Algorithm II.

3.4. Examples

Here we show two examples by adopting one available example used by Xu and
Yager10 and another one by Gong et al.43 Through comparison with the methods
in Refs. 10 and 43, we try to show our methods expose more information which is
not shown before.

Example 1. Assume that we have four alternatives xi (i = 1, 2, 3, 4), and three
experts ek (k = 1, 2, 3) in a group decision-making problem. Suppose the weights
for each expert are 0.5, 0.3, and 0.2, respectively. Each expert ek (k = 1, 2, 3)
compares the four alternatives and constructs the intuitionistic preference relations
R(k) = (r(k)

ij )4×4 (k = 1, 2, 3), respectively, shown as follows:

R(1) =




(0.5, 0.5) (0.2, 0.4) (0.5, 0.4) (0.7, 0.1)
(0.4, 0.2) (0.5, 0.5) (0.3, 0.5) (0.4, 0.5)
(0.4, 0.5) (0.5, 0.3) (0.5, 0.5) (0.8, 0.2)
(0.1, 0.7) (0.5, 0.4) (0.2, 0.8) (0.5, 0.5)


,

R(2) =




(0.5, 0.5) (0.3, 0.4) (0.4, 0.5) (0.6, 0.3)
(0.4, 0.3) (0.5, 0.5) (0.4, 0.4) (0.5, 0.3)
(0.5, 0.4) (0.4, 0.4) (0.5, 0.5) (0.7, 0.2)
(0.3, 0.6) (0.3, 0.5) (0.2, 0.7) (0.5, 0.5)


,

R(3) =




(0.5, 0.5) (0.8, 0.1) (0.3, 0.4) (0.6, 0.4)
(0.1, 0.8) (0.5, 0.5) (0.5, 0.3) (0.4, 0.5)
(0.4, 0.3) (0.3, 0.5) (0.5, 0.5) (0.3, 0.7)
(0.4, 0.6) (0.5, 0.4) (0.7, 0.3) (0.5, 0.5)


.



November 10, 2011 11:30 WSPC/S0219-6220 173-IJITDM
S0219622011004737

1122 C. P. Wei & X. J. Tang

Example 1 was adopted by Xu and Yager10 for consensus analysis in group
decision-making based on intuitionistic preference relations. Here we use the data
to derive the ranking order of the alternatives.

The original weights 0.5, 0.3, 0.2 of the three experts are regarded as the sub-
jective weights, i.e. we suppose the subjective weighting vector w1 is (0.5, 0.3, 0.2).
Next we derive the objective weighting vector of the experts and aggregate the
subjective and objective weighting vectors into the integrated weighting vector of
the experts by Algorithm I.

By formula (14), we get the entropies of R(i) (i = 1, 2, 3):

EWL(R(1)) = 0.7143, EWL(R(2)) = 0.7939, EWL(R(3)) = 0.7153.

Then, by formula (15), we get the weighting vector wa = (0.3679, 0.2654, 0.3666) of
the experts determined by the entropies.

Using formula (17), we have

S(R(1), R(2)) = 0.8693, S(R(1), R(3)) = 0.7454, S(R(2), R(3)) = 0.7703.

Then, by formulas (18) and (19), we get the averaged similarity degrees S(R(i)) of
R(i) (i = 1, 2, 3) and the weighting vector wb of the experts determined by average
similarity degrees, respectively:

S(R(1)) = 0.8074, S(R(2)) = 0.8198, S(R(3)) = 0.7578,

wb = (0.3386, 0.3438, 0.3178).

Let η = 0.5, which means either the weight determined by the entropy or
the weight by the similarity measure contributes half to the objective weight. By
formula (20), we get the objective weighting vector

w2 = (0.3533, 0.3046, 0.3422).

We can integrate the subjective weighting vector w1 and the objective weight-
ing vector w2 into the integrated weighting vector w by formula (21): w =
γw1 + (1 − γ)w2, γ ∈ [0, 1], where γ is determined by the decision-makers accord-
ing to their preferences to the objective and subjective weight information. Here
at first we suppose γ = 0.5 in formula (21) and obtain the integrated weighting
vector w:

w = (0.4266, 0.3023, 0.2711).

Till now, we have obtained the integrated weights of experts for the practical
decision-making problem. Next, we consider to integrate the weighting vector w =
(0.4266, 0.3023, 0.2711) into the intuitionistic preference relations of experts and
derive the ranking of alternatives.
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First, we describe Xu’s approach9 to derive the decision result, which involves
the following steps:

Step 1. Use the formula: r
(k)
i = 1

n

∑n
j=1 r

(k)
ij , i = 1, 2, . . . , n, to get the averaged

intuitionistic fuzzy value r
(k)
i of the alternative xi over all the other alternatives:

r
(1)
1 = (0.475, 0.35), r

(1)
2 = (0.4, 0.425),

r
(1)
3 = (0.55, 0.375), r

(1)
4 = (0.325, 0.6),

r
(2)
1 = (0.45, 0.425), r

(2)
2 = (0.45, 0.375),

r
(2)
3 = (0.525, 0.375), r

(2)
4 = (0.325, 0.575),

r
(3)
1 = (0.55, 0.35), r

(3)
2 = (0.375, 0.525),

r
(3)
3 = (0.375, 0.5), r

(3)
4 = (0.525, 0.45).

Step 2. Use the formula: ri =
∑m

k=1 wkr
(k)
i , i = 1, 2, . . . , n, to aggregate all r

(k)
i ,

(k = 1, 2, . . . , m), corresponding to m experts, into a collective intuitionistic fuzzy
value ri = (ui, vi) of the alternative xi over all the other alternatives:

r1 = (0.4878, 0.34727), r2 = (0.4083, 0.4370), r3 = (0.4950, 0.4089),

r4 = (0.3792, 0.5518).

Step 3. Calculate the score function S(ri) = ui − vi of ri and get

S(r1) = 0.1151, S(r2) = −0.0287, S(r3) = 0.0861, S(r4) = −0.1726.

Then

S(r1) > S(r3) > S(r2) > S(r4),

and hence

x1 � x3 � x2 � x4,

where the notation � indicates that one alternative is preferred to another.
Now we give the ranking result derived by our relative similarity method. By

(22) in Algorithm II, we get the collective intuitionistic preference relation

R =




(0.5000, 0.5000) (0.3929, 0.3187) (0.4156, 0.4303) (0.6427, 0.2418)
(0.3187, 0.3929) (0.5000, 0.5000) (0.3845, 0.4156) (0.4303, 0.4396)
(0.4303, 0.4156) (0.4156, 0.3845) (0.5000, 0.5000) (0.6342, 0.3356)
(0.2418, 0.6427) (0.4396, 0.4303) (0.3356, 0.6342) (0.5000, 0.5000)


.

By formulas (23) and (24), we obtain

S(R1, R+) = 0.4189, S(R2, R+) = 0.3533,

S(R3, R+) = 0.3952, S(R4, R+) = 0.2804,
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S(R1, R−) = 0.3010, S(R2, R−) = 0.2761,

S(R3, R−) = 0.3108, S(R4, R−) = 0.3400.

Then formula (25) gives the evaluation values of alternatives xi (i = 1, 2, 3, 4):

f(x1) = 0.5818, f(x2) = 0.5614, f(x3) = 0.5597, f(x4) = 0.4519.

Since

f(x1) > f(x2) > f(x3) > f(x4),

we have

x1 � x2 � x3 � x4.

By Algorithm II and Xu’s approach,9 we have that x1 ranks the top, x4 ranks
the last, however, x2 and x3 have different ranking order. The ranking orders of
alternatives by both methods are a little different, but the advantage that x2 over
x3, or vice versa, is not so bigger than that of the other pairs of the alternatives,
since the deviation of f(x2) and f(x3) in Algorithm II is 0.0017. Next, we go further
to compare the ranking results obtained by the two methods by assigning γ with
different values which show the different portions of the subjective weight and the
objective weight in the total weight of the expert.

Table 1 presents the computation results by Xu’s approach9 for different weight-
ing vectors of experts corresponding to different values of γ, and Table 2 lists the
results for Algorithm II.

By comparing the ranking results as listed in both Tables 1 and 2, we find that
Xu’approach9 and Algorithm II give the same ranking orders for γ = 0.2 and γ = 0.
However, for γ = 1, γ = 0.8, and γ = 0.5, the ranking orders by both methods are
different only for the alternatives x2 and x3. The results given by Algorithm II are
changed along with the different portions of objective and subjective parts in the

Table 1. Ranking order of the 4 alternatives under different values of γ by Xu’s approach.

γ w r1 r2 r3

1 (0.5, 0.3, 0.2) (0.4825, 0.3725) (0.4100, 0.4300) (0.5075, 0.4000)
0.8 (0.4707, 0.3009, 0.2284) (0.4846, 0.3726) (0.4093, 0.4328) (0.5025, 0.4036)
0.5 (0.4266, 0.3023, 0.2711) (0.4878, 0.3727) (0.4084, 0.4370) (0.4950, 0.4089)
0.2 (0.3826, 0.3037, 0.3137) (0.4910, 0.3728) (0.4074, 0.4412) (0.4875, 0.4143)
0 (0.3533, 0.3046, 0.3422) (0.4931, 0.3729) (0.4067, 0.4440) (0.4826, 0.4178)

r4 S(r1) S(r2) S(r3) S(r4) Raking Order

(0.3650, 0.5625) 0.1100 −0.0200 0.1075 −0.1975 x1 � x3 � x2 � x4

(0.3707, 0.5582) 0.1120 −0.0235 0.0989 −0.1875 x1 � x3 � x2 � x4

(0.3792, 0.5518) 0.1151 −0.0287 0.0861 −0.1726 x1 � x3 � x2 � x4

(0.3878, 0.5454) 0.1182 −0.0339 0.0733 −0.1576 x1 � x3 � x2 � x4

(0.3935, 0.5411) 0.1202 −0.0373 0.0647 −0.1476 x1 � x3 � x2 � x4
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Table 2. Ranking order under different values of γ by Algorithm II.

γ w S(Ri, R+) S(Ri, R−)

1 (0.5, 0.3, 0.2) 0.4185 0.3578 0.4060 0.2724 0.2958 0.2721 0.3163
0.8 (0.4707, 0.3009, 0.2284) 0.4186 0.3560 0.4016 0.2755 0.2979 0.2737 0.3141
0.5 (0.4266, 0.3023, 0.2711) 0.4189 0.3533 0.3952 0.2804 0.3010 0.2761 0.3108
0.2 (0.3826, 0.3037, 0.3137) 0.4193 0.3507 0.3889 0.2853 0.3041 0.2784 0.3074
0 (0.3533, 0.3046, 0.3422) 0.4196 0.3490 0.3849 0.2887 0.3061 0.2799 0.3052

S(Ri, R−) f(x1) f(x2) f(x3) f(x4) Ranking Order

0.3432 0.5859 0.5681 0.5621 0.4425 x1 � x2 � x3 � x4

0.3419 0.5842 0.5653 0.5611 0.4462 x1 � x2 � x3 � x4

0.3400 0.5818 0.5614 0.5597 0.4519 x1 � x2 � x3 � x4

0.3380 0.5796 0.5575 0.5585 0.4577 x1 � x3 � x2 � x4

0.3366 0.5782 0.5549 0.5578 0.4616 x1 � x3 � x2 � x4

total weight of an expert. We may understand that the ranking results vary with
different weights among the experts. The results of Algorithm II reflect the impacts
of the changes of the weights.

Next, we show another example to compare Algorithm II with other methods.

Example 2. We consider an example that a decision-maker (potential buyer)
invites three experts to help him buy a house. Suppose that the weights for each
expert are 0.3, 0.4, 0.3, respectively. There are three alternatives (houses) X =
{x1, x2, x3} to be chosen. The intuitionistic preference relations Ri presented by
the ith expert, i = 1, 2, 3, are as follows:

R(1) =




(0.5, 0.5) (0.1, 0.6) (0.6, 0.3)
(0.6, 0.1) (0.5, 0.5) (0.8, 0.2)
(0.3, 0.6) (0.2, 0.8) (0.5, 0.5)


,

R(2) =




(0.5, 0.5) (0.3, 0.7) (0.7, 0.2)
(0.7, 0.3) (0.5, 0.5) (0.6, 0.2)
(0.2, 0.7) (0.2, 0.6) (0.5, 0.5)


,

R(3) =




(0.5, 0.5) (0.3, 0.6) (0.9, 0.1)
(0.6, 0.3) (0.5, 0.5) (0.7, 0.2)
(0.1, 0.9) (0.2, 0.7) (0.5, 0.5)


.

Example 2 was adopted by Gong et al.43 to illustrate their goal programming
approach to obtain the priority vectors from the intuitionistic preference rela-
tions. By their method, the intuitionistic fuzzy values of alternatives x1, x2, and
x3 are (0.2599, 0.6519), (0.4946, 0.3632), and (0.1033, 0.8426), respectively. The cor-
responding score function values are −0.3920, 0.1314, and −0.7393, respectively.
Thus, the ranking order of the alternatives is x2 � x1 � x3.
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Next, we derive the decision results by Xu’s approach9 and Algorithm II for the
given weighting vector w = (0.3, 0.4, 0.3).

We first calculate the decision result by using Xu’s approach.9 By the formula
r
(k)
i = 1

n

∑n
j=1 r

(k)
ij , we get the averaged intuitionistic fuzzy values r

(k)
i of the alter-

natives xi over all the other alternatives:

r
(1)
1 = (0.4, 0.4667), r

(1)
2 = (0.6333, 0.2667), r

(1)
3 = (0.3333, 0.6333),

r
(2)
1 = (0.5, 0.4667), r

(2)
2 = (0.6, 0.3333), r

(2)
3 = (0.3, 0.6),

r
(3)
1 = (0.5667, 0.4), r

(3)
2 = (0.6, 0.3333), r

(3)
3 = (0.2667, 0.7).

Using the formula ri =
∑m

k=1 wkr
(k)
i , we obtain the collective intuitionistic fuzzy

values ri = (ui, vi) of the alternatives xi over all the other alternatives:

r1 = (0.4900, 0.4467), r2 = (0.6100, 0.3133), r3 = (0.3000, 0.6400).

Then we get the score functions

S(r1) = 0.0433, S(r2) = 0.2967, S(r3) = −0.3400.

Since S(r2) > S(r1) > S(r3), we have x2 � x1 � x3.

Next, we calculate the result by Algorithm II. By formula (22) in Algorithm II,
we get the collective intuitionistic preference relation

R =




(0.50, 0.50) (0.24, 0.64) (0.73, 0.20)
(0.64, 0.24) (0.50, 0.50) (0.69, 0.20)
(0.20, 0.73) (0.20, 0.69) (0.50, 0.50)


.

By (23), (24), and (25), we get the evaluation values f(xi) of alternatives xi (i =
1, 2, 3):

f(x1) =
0.3892

0.3892 + 0.3474
= 0.5284, f(x2) =

0.4979
0.4979 + 0.2367

= 0.6778,

f(x3) =
0.2185

0.2185 + 0.5246
= 0.2940.

Then f(x2) > f(x1) > f(x3), and so, x2 � x1 � x3. Hence Algorithm II, Xu’s
approach,9 and Gong’s approach43 give the same ranking results in Example 2.

As the theories of IFSs and IVFSs are equivalent,41,42 we can apply the methods
of interval fuzzy preference relation to rank the alternatives by some transforma-
tions. Here for example, we transform the collective intuitionistic preference relation
R to an interval fuzzy preference relation R′:

R′ =




[0.50, 0.50] [0.24, 0.36] [0.73, 0.80]
[0.64, 0.76] [0.50, 0.50] [0.69, 0.80]
[0.20, 0.27] [0.20, 0.31] [0.50, 0.50]


.
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For the interval fuzzy preference relations, Xu and Chen44 presented some linear
programming models to derive the interval priority weights of alternatives based on
the additive transitivity or the multiplicative transitivity. Now we give the decision
results for the interval fuzzy preference relation R′ by Xu and Chen’s methods.44

Using the models (M-3), (M-4), and (M-5) based on the additive transitivity in
Ref. 45, we get the interval priority weights ωi of alternatives xi (i = 1, 2, 3):

ω1 = [0.3639, 0.3645], ω2 = [0.6268, 0.6275], ω3 = [0.0083, 0.0009].

Then we can construct the possibility degree matrix P by the method in Ref. 44:

P =
(

0.5 0 1
1 0.5 1
0 0 0.5

)
. Summing all entries in each row of P , we have p1 = 1.5, p2 =

2.5, p3 = 0.5. Thus ω2

100%
> ω1

100%
> ω3, which indicates that x2 � x1 � x3.

Using the models (M-11), (M-12), and (M-13) based on the multiplicative transi-
tivity in Ref. 44, we get the interval priority weights ωi of alternatives xi (i = 1, 2, 3):

ω1 = [0.3103, 0.3103], ω2 = [0.5517, 0.5517], ω3 = [0.1379, 0.1379].

So we have x2 � x1 � x3. Hence the ranking results derived by Xu and Chen’s
methods44 are the same as that by Algorithm II.

Above two examples illustrate that Algorithm II is a reasonable method to rank
alternatives in practice. Moreover, the evaluation values given by formula (25) in
Algorithm II may also serve as some kind of weights of alternatives for further
use, while the others (Xu’s approach,9 Gong’s approach,43 and Xu and Chen’s
methods44) do not provide such kind of information, since the evaluation values
of the alternatives acquired by those three methods are either intuitionistic fuzzy
values or interval values instead of crisp values. On the other hand, we may use
Algorithm I to obtain the objective weights of experts according to the intuitionis-
tic preference relations of the experts. A decision-maker can choose proper values
of the parameter γ according to his/her preference to the subjective or objective
weight information of experts under practical circumstances. Thus, by integrating
Algorithm I and Algorithm II, we can deal with group decision-making problems
based on the intuitionistic preference relations more flexibly and effectively.

4. Conclusion

Recently, many similarity measures and entropy formulas have been applied to the
group decision-making problems based on intuitionistic fuzzy information. In this
paper, we apply the measures on entropy and similarity to measure the uncertain
information of intuitionistic preference relations and the average similarity degree
of one individual intuitionistic preference relation to the others, respectively. We
develop a method to assess the importance weights of experts by taking into account
both the subjective and objective weights of the experts. The subjective part of
the weights denotes to the traditional weights usually predetermined according
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to the experts’ social or academic fame or administrative positions in reality. We
extract information from the experts’ practical judgments (individual intuitionistic
preference relations) toward the alternatives, and transform it into the objective
weights of the experts by Algorithm I. We also aggregate the individual intuition-
istic preference relations into a collective intuitionistic preference relation by using
an intuitionistic fuzzy weighted arithmetic averaging operator, and propose a rel-
ative similarity method to derive the priorities of alternatives from the collective
intuitionistic preference relation by Algorithm II.

Two examples are exhibited to compare our methods with some others to show
the feasibility of our methods. And the evaluation value of the alternatives derived
from Algorithm II may also be used as a kind of weights of the alternatives for
further use.

Some future work may involve the study on the other similarity measures and
entropy formulas for IFSs, as well as their comparative analysis and applications in
multiple-criteria fuzzy group decision-making problems.

Even we go forward to consider more fresh information (the experts’ judgments
toward the alternatives) to adjust the weights of the experts, we find that such
kind of work may still not be perfect to avoid the misuse of the weights of experts
during the practical decision-making. Even adjusting the parameters, such as γ,
cannot overcome the disadvantages of the methods only based on entropy and
similarity measures, especially if the evidences of decision-making only come from
the experts’ judgments with no consideration to the evaluations of the performances
of the experts. That is also a big challenge to decision-making.
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