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Hesitant fuzzy linguistic term set (HFLTS) is a set with ordered consecutive linguistic
terms, and is very useful in addressing the situations where people are hesitant in pro-
viding their linguistic assessments. Wang [H. Wang, Extended hesitant fuzzy linguistic
term sets and their aggregation in group decision making, International Journal of Com-

putational Intelligence Systems 8(1) (2015) 14–33.] removed the consecutive condition
to introduce the notion of extended HFLTS (EHFLTS). The generalized form has wider
applications in linguistic group decision-making. By introducing distance measures for
EHFLTSs, in this paper we develop a novel multi-criteria group decision making model
to deal with hesitant fuzzy linguistic information. The model collects group linguistic
information by using EHFLTSs and avoids the possible loss of information. Moreover,
it can assess the importance weights of criteria according to their subjective and ob-
jective information and rank alternatives based on the rationale of TOPSIS. In order
to illustrate the applicability of the proposed algorithm, two examples are given and
comparisons are made with the other existing methods.
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1. Introduction

In multi-criteria decision making (MCDM), many criteria are of qualitative nature,

and it is more suitable to evaluate them in the form of languages. For example,

when evaluating the reliability of an information system, experts prefer to use

fuzzy languages such as “excellent”, “good” or “poor” etc. Hence, it is very natural

and important to study the fuzzy linguistic approach.46 Up to now, many linguistic

models have been proposed to extend and improve the fuzzy linguistic approach in

information modeling and computing processes. There are two classical linguistic

computational models in specialized literatures:33 the semantic model2,8,30,44 and

the symbolic model.9,11,13,14 Moreover, these models have been successfully applied

to many areas, such as, decision making,4,10,15,45 information retrieval,16,20 supply

chain management.6

In these linguistic models, an expert usually uses a single linguistic term in a

linguistic term set to assess a linguistic variable. However, when the expert is think-

ing of several terms at the same time or looking for a more complex linguistic term

not usually defined in the linguistic term set, it is difficult for him/her to provide a

single term as an expression of his/her knowledge. In order to model such situations,

Rodŕıguez et al.31 used the idea in defining hesitant fuzzy sets35,36 (see also Refs. 24

and 25) to introduce the concept of hesitant fuzzy linguistic term sets (HFLTSs).

So, by means of the HFLTS model, an expert could assess a linguistic variable by

using several linguistic terms for decision-making. About the HFLTS theory, some

preliminary results have been obtained. Liao et al.26 gave the distance and simi-

larity measures of HFLTSs and applied them to MCDM problems. Zhu and Xu47

introduced the concept of hesitant fuzzy linguistic preference relations(HFLPRs),

developed some consistency measures and two optimization methods to improve the

consistency of HFLPRs. Liu et al.28 discussed the additive consistency of linguistic

fuzzy preference relations with elements being comparative linguistic expressions.

Rodŕıguez et al.32 presented a linguistic group decision making model capable of

dealing with comparative linguistic expressions as preference assessments in hesi-

tant decision situations. Lee and Chen22 proposed a fuzzy decision making method

based on likelihood-based comparison relations of HFLTSs. Beg and Rashid1 put

forward a fuzzy TOPSIS method to aggregate the opinions of experts represented by

HFLTSs. Liao et al.27 introduced the hesitant fuzzy linguistic VIKOR method and

implemented it into decision making. Liu and Rodŕıguez29 constructed the fuzzy

envelope of an HFLTS using a fuzzy membership function and then combined with

the fuzzy TOPSIS model to solve supplier selection and MCDM problems. Wei

et al.42 constructed possibility degree formulas for comparing HFLTSs and defined

two aggregation operators to deal with MCDM problems. Wang et al.37 proposed

an outranking approach by integrating both HFLTSs and ELECTRE I to solve

MCDM problems.

An HFLTS on a linguistic term set S is a subset with ordered consecutive

linguistic terms in S, and has been applied in decision-making problems. In the
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study of HFLTSs, people find that the theory and applications have certain

limitations.

For example, let S = {s0: nothing, s1: very low, s2: low, s3: medium, s4: high,

s5: very high, s6: perfect} be a linguistic term set. We use the scale S to assess the

safety of a car. Suppose there are two experts, one assigns s3 or s4 and the other

s6. Then we can use a nonconsecutive linguistic term set {s3, s4, s6} to describe

the opinions of the two experts. This nonconsecutive linguistic term set is called

by Wang40 an extended hesitant fuzzy linguistic term set (EHFLTS). In fact, it is

better to use EHFLTSs to aggregate the group linguistic assessments than to use

traditional processing models based on aggregation operators in such case where

experts are of equal importance. We now compare the aggregation result derived

from linguistic operators with that represented by the EHFLTS {s3, s4, s6}. If we

utilize the HLWA operator defined in Ref. 42 to aggregate the 2-expert’s evaluations

stand for by {s3, s4} and {s6}, then the collective evaluation is {s5}, which is a

compromise of the three possible linguistic terms s3, s4 and s6. Using {s5} to

represent the comprehensive evaluation information of the two experts is obviously

not suitable. The aggregation process of the operator brings the loss of information.

Beg and Rashid1 also proposed an operator for aggregating the opinions of experts.

By means of this operator, the comprehensive evaluation information is represented

by an linguistic interval [s4, s6]. Using continuous linguistic intervals to represent

the aggregation results of discrete linguistic terms is by nature inappropriate. The

EHFLTS {s3, s4, s6} involves all the possible evaluations of experts, and thus avoids

the loss and distortion of information in the intermediate course of information

processing.

EHFLTS is a very effective tool to collect the linguistic information of a group,

more theory and methods need to be developed. Wang40 defined some basic op-

erations and two types of operators to aggregate EHFLTSs. These operators are

applied to solving hesitant fuzzy linguistic group decision making problems. In this

process, the virtual linguistic terms are necessarily introduced in operation and com-

parison and the obtained aggregation values are relatively tedious. For example, if

the evaluations of an alternative under three criteria with an importance weighting

vector (0.2,0.3,0.5) are {s2, s3, s4}, {s4, s6} and {s1, s3}, respectively, then by the

EHFLWA operators40 the overall evaluation of the alternative is a set with 10 vir-

tual linguistic terms: {s2.1, s2.3, s2.5, s2.7, s3.1, s3.3, s3.5, s3.7, s3.9, s4.1}. If there are

more criteria, then the obtained overall aggregated value is a set with more virtual

linguistic terms, which is shown in Example 1. Moreover, a comparison method must

be chosen to compare these overall aggregated values of alternatives. In Ref. 40,

the mean values of the virtual linguistic term sets are used to rank different virtual

linguistic term sets. In this paper, we try to develop a novel method to solve hes-

itant fuzzy group decision-making problems. The method can avoid the adoption

of virtual linguistic terms, tedious aggregated values and the choice of comparison

method for virtual linguistic term sets. We first introduce an axiomatic definition of

the distance measure for EHFLTSs and three concrete distance formulas. Then we
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develop a group decision-making model to deal with hesitant fuzzy linguistic infor-

mation. The model can collect the group linguistic information by using EHFLTSs

and avoid the possible loss of information. Moreover, it can assess the importance

weights of criteria according to their subjective and objective information and rank

alternatives based on the rationale of TOPSIS (Technique for Order Preference by

Similarity to Ideal Solution) in Ref. 17. Since an HFLTS is a special EHFLTS, the

method are also suitable for HFLTSs.

The paper is organized as follows. Section 2 reviews the definition and basic

operations of EHFLTSs. Section 3 gives an axiomatic definition of the distance

measure for EHFLTSs and three concrete distance formulas. In Sec. 4, based on the

proposed distance measures for EHFLTSs and the rationale of TOPSIS, a model is

developed to solve group decision making problems with hesitant fuzzy linguistic

information. The model is specified by three phases illustrated by Subsecs. 4.1,

4.2 and 4.3, respectively. Examples in Sec. 5 are given to illustrate the process of

Algorithm I and the results are compared with those obtained by other existing

methods. Conclusions are drawn in Sec. 6.

2. Extended HFLTSs and Basic Operations

Consider a finite and totally ordered linguistic term set S = {s0, s1, . . . , sg} with

odd cardinality and the mid term representing an assessment of “approximately

0.5”, and with the rest of the terms being placed symmetrically around it as in

Refs. 2, 8, 9, 12 and 45. For example, a set S with seven terms could be given as

follows: S = {s0: nothing, s1: very low, s2: low, s3: medium, s4: high, s5: very high,

s6: perfect}. Moreover, it is usually required that the linguistic term set should

satisfy the following additional characteristics.

(1) There is a negation operator: Neg(si) = sg−i, where g+1 is the cardinality

of the term set;

(2) The set is ordered: si ≤ sj ⇐⇒ i ≤ j. Therefore, there exists a maximization

operator: max(si, sj) = si if sj ≤ si, and a minimization operator: min(si, sj) = si
if si ≤ sj .

Definition 1.31 Let S = {s0, s1, . . . , sg} be a linguistic term set. An HFLTS HS

on S is a subset with ordered and consecutive linguistic terms in S.

Wang40 generalized the definition of HFLTSs as follows.

Definition 2.40 Let S = {s0, s1, . . . , sg} be a linguistic term set. An extended

HFLTS (EHFLTS) HS on S is a subset with ordered linguistic terms in S.

We suppose that the elements in an EHFLTS are arranged in increasing order.

Obviously, an HFLTS is a special EHFLTS in which the linguistic terms are ordered

and consecutive.

For EHFLTSs, Wang40 defined the “∨” and “∧” operations, which are called

max-union and min-intersection operations in this paper, respectively.
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Definition 3. Let S = {s0, s1, . . . , sg} be a linguistic term set. For EHFLTSs HS ,

H1
S and H2

S on S,

(1) {sg−i | si ∈ HS} is the negation of HS , denoted by Neg(HS);

(2) {max{si, sj} | si ∈ H1
S , sj ∈ H2

S} is the max-union of H1
S and H2

S , denoted by

H1
S ∨H2

S ;

(3) {min{si, sj} | si ∈ H1
S , sj ∈ H2

S} is the min-intersection of H1
S and H2

S , denoted

by H1
S ∧H2

S .

Example 1. Let S = {s0: nothing, s1: very low, s2: low, s3: medium, s4: high, s5:

very high, s6: perfect} be a linguistic term set; H1
S = {s2, s3, s5} and H2

S = {s4, s5}

be two EHFLTSs on S. Then, by Definition 3, we have

Neg(H1
S) = {s6−5, s6−3, s6−2} = {s1, s3, s4} ,

H1
S ∨H2

S = {max{s2, s4},max{s2, s5},max{s3, s4},max{s3, s5},

max{s5, s4},max{s5, s5}}

= {s4, s5},

and

H1
S ∧H2

S = {min{s2, s4},min{s2, s5},min{s3, s4},min{s3, s5},

min{s5, s4},min{s5, s5}}

= {s2, s3, s4, s5}.

Remark 1. For HFLTSs, the results of the above operations are also HFLTSs.

In fact, for two HFLTSs, H1
S and H2

S , assume that H2+
S ≤ H1+

S , where HS
+ =

max{si | si ∈ HS} and HS
− = min{si | si ∈ HS} for an arbitrary HFLTS HS .

Suppose I(si) = i for any linguistic term si. Then

H1
S ∨H2

S =

{

H1
S , H2−

S ≤ H1−
S ,

{si | i ∈ {I(H2−
S ), I(H2−

S ) + 1, . . . , I(H1+
S )}}, H2−

S > H1−
S ,

H1
S ∧H2

S =

{

H2
S , H2−

S ≤ H1−
S ,

{si | i ∈ {I(H1−
S ), I(H1−

S ) + 1, . . . , I(H2+
S )}}, H2−

S > H1−
S .

The following property can be derived from Definition 3.

Property 1.40 Let S = {s0, s1, . . . , sg} be a linguistic term set, HS , H
1
S , H

2
S and

H3
S be four EHFLTSs on S. Then the followings are true:

(1) Neg(Neg(HS)) = HS .

(2) Neg(H1
S ∨ H2

S) = Neg(H1
S) ∧ Neg(H2

S) and Neg(H1
S ∧ H2

S) = Neg(H1
S) ∨

Neg(H2
S).

(3) Commutativity: H1
S ∨H2

S = H2
S ∨H1

S and H1
S ∧H2

S = H2
S ∧H1

S .
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(4) Associativity: H1
S ∨ (H2

S ∨ H3
S) = (H1

S ∨ H2
S) ∨ H3

S and H1
S ∧ (H2

S ∧ H3
S) =

(H1
S ∧H2

S) ∧H3
S .

(5) Distributivity: H1
S∧(H2

S∨H3
S) = (H1

S∧H2
S)∨(H1

S ∧H3
S) and H1

S∨(H2
S∧H3

S) =

(H1
S ∨H2

S) ∧ (H1
S ∨H3

S).

3. Distance Measures for EHFLTSs

Xu and Xia43 defined the distance measures for hesitant fuzzy sets and hesitant

fuzzy elements. Liao et al.26 introduced the axiomatic definition of the distance

measure and some distance formulas for HFLTSs. In this section, we generalize the

definition and formulas, and give the axiomatic definition of the distance measure

for EHFLTSs and three concrete distance measures.

Let l(HS) be the number of linguistic terms in EHFLTS HS and skHS
be the

kth smallest linguistic term in HS . In general case, for two EHFLTSs H1
S and H2

S ,

l(H1
S) 6= l(H2

S). Let l = max{l(H1
S), l(H

2
S)}. In order to operate correctly, we may

extend the shorter one until the lengths of both are the same. The best way to

extend the shorter one is to add the same linguistic term several times in it until

the changed linguistic term set has the same length as the longer one. We may add

any linguistic term in the shorter one to extend it. The added linguistic term can

be obtained by the following method.

Suppose that H2
S is the shorter one, H2

S

+
= max{si | si ∈ H2

S}, H
2
S

−

= min{si |

si ∈ H2
S} and ξ(0 ≤ ξ ≤ 1) is an optimized parameter. Then the added linguistic

term s in H2
S can be obtained by

s = C2(ξ,H2
S

+
, 1− ξ,H2

S

−

) = ξ ⊙H2
S

+
⊕ (1− ξ)⊙H2

S

−

,

where C2(ξ,H2
S

+
, 1− ξ,H2

S

−

) is the convex combination of the two linguistic terms

H2
S

+
and H2

S

−

defined in Ref. 9.

For example, let S = {s0: nothing, s1: very low, s2: low, s3: medium, s4: high,

s5: very high, s6: perfect} be a linguistic term set, H1
S = {s1, s2, s4, s5} and H2

S =

{s2, s3, s4} be two EHFLTSs on S. It is noted that l(H1
S) > l(H2

S) from which we

should extend H2
S by adding a linguistic term several times until it has the same

length as H1
S so as to calculate the distance between H1

S and H2
S . The selection

of this linguistic term mainly relies on the decision makers’ risk attitudes, which

determine the optimized parameter ξ. The optimists expect desirable outcomes

and may select ξ = 1 and extend H2
S as H2

S = {s2, s3, s4, s4}, and pessimists expect

unfavorable outcomes and extend it as H2
S = {s2, s2, s3, s4}. If the decision makers

are neutral and select ξ = 0.5, then the added linguistic term s is s3 and H2
S

is extended as H2
S = {s2, s3, s3, s4}. Although different operations may result in

different results, this is reasonable because the decision maker’s risk attitudes do

have a direct influence on the final decision.
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For two EHFLTSs H1
S and H2

S with the same length l, H1
S = H2

S if and only if

sk
H1

S

= sk
H2

S

, k = 1, 2, . . . , l, where sk
Hi

S

is the kth smallest linguistic term in Hi
S for

i = 1, 2.

Definition 4. Let S = {s0, s1, . . . , sg} be a linguistic term set, H1
S and H2

S be

two EHFLTSs on S. Then the distance measure between H1
S and H2

S , denoted by

d(H1
S , H

2
S), should satisfy the following properties:

(1) 0 ≤ d(H1
S , H

2
S) ≤ 1;

(2) d(H1
S , H

2
S) = 0 if and only if H1

S = H2
S ;

(3) d(H1
S , H

2
S) = d(H2

S , H
1
S).

Based on the well-known Hamming distance, the Euclidean distance, the Haus-

dorff metric and Definition 4, we define the following distance measures for

EHFLTSs H1
S and H2

S with the same length l:

a normalized Hamming distance measure for EHFLTSs:

d1(H
1
S , H

2
S) =

1

l

l
∑

k=1

|I(sk
H1

S

)− I(sk
H2

S

)|

g
, (1)

a normalized Euclidean distance measure for EHFLTSs:

d2(H
1
S , H

2
S) =

(

1

l

l
∑

k=1

(I(sk
H1

S

)− I(sk
H2

S

)

g

)2
)

1
2

(2)

and a normalized Hausdorff distance measure for EHFLTS:

d3(H
1
S , H

2
S) = max

k

|I(sk
H1

S

)− I(sk
H2

S

)|

g
, (3)

where I(si) = i and g is determined by the linguistic term set S = {s0, s1, . . . , sg}.

Obviously, the above three distance measures satisfy the relationship:

d1(H
1
S , H

2
S) ≤ d2(H

1
S , H

2
S) ≤ d3(H

1
S , H

2
S).

Remark 2. Since HFLTSs are special EHFLTSs, the formulas (1), (2) and (3) can

be used to measure the distance between two HFLTSs H1
S and H2

S . In Ref.,26 the

normalized Hamming distance, Euclidean distance and Hausdorff distance between

two HFLTSs H1
S and H2

S are also defined, respectively:

d1(H
1
S , H

2
S) =

1

l

l
∑

k=1

|I(sk
H1

S

)− I(sk
H2

S

)|

g + 1
,

d2(H
1
S , H

2
S) =

(

1

l

l
∑

k=1

(I(sk
H1

S

)− I(sk
H2

S

)

g + 1

)2
)

1
2

,

d3(H
1
S , H

2
S) = max

k

|I(sk
H1

S

)− I(sk
H2

S

)|

g + 1
.
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Obviously, the distances defined in Ref.26 are all less than 1 and the distances

defined by formulas (1), (2) and (3) are all no more than 1.

4. A Model Dealing with Hesitant Fuzzy Linguistic Group

Decision-Making Problems

A multi-criteria linguistic group decision-making problem considered in this pa-

per can be described as follows: let X = {x1, x2, . . . , xn} be a set of alternatives.

Suppose there are t evaluators or experts d1, d2, . . . , dt to provide evaluations of

alternatives xi (i = 1, 2, . . . , n) under criteria cj (j = 1, 2, . . . ,m) by a linguistic

term set S = {s0, s1, . . . , sg}. Suppose that the evaluation information of the kth

expert is represented by a hesitant fuzzy linguistic decision matrix (Hij
S

(k)
)n×m,

denoted by Rk, where each H
ij
S

(k)
is an HFLTS or a single linguistic term (which

can be regarded as a special HFLTS) in S, and represents the linguistic assessment

provided by the expert dk for the alternative xi with respect to the criterion cj .

Decision makers’ goal is to obtain the ranking order of the alternatives.

As it was mentioned in Ref. 11, there are two basic approaches to obtain the

overall aggregated values of alternatives. One is a direct approach:

{R1, R2, . . . , Rt} → solution.

According to this method, a solution is derived on the basis of individual decision

matrices. The other is an indirect approach:

{R1, R2, . . . , Rt} → R → solution

providing a solution on the basis of an overall decision matrix. In what follows,

we are going to consider an indirect method dealing with the above linguistic

group decision making problem. The method is specified by the following phases:

(1) Aggregate the hesitant fuzzy linguistic information of evaluators. (2) Assign the

importance weights of criteria based on distance measures. (3) Rank alternatives

based on the rationale of TOPSIS. The following subsections will describe these

phases in detail.

4.1. Aggregate the hesitant fuzzy linguistic information of

evaluators

In the above linguistic group decision making problem, the HFLTSsHij
S

(k)
represent

the evaluation information of the kth expert for the alternative xi with respect to

the criterion cj . We will use EHFLTSs to collect the evaluations of t experts. Let

H
ij
S =

⋃t

k=1 H
ij
S

(k)
and, for any two HFLTSs H1

S and H2
S , H

1
S

⋃

H2
S = {si|si ∈

H1
S or si ∈ H2

S}. Then H
ij
S is an EHFLTS and represents the collective evaluation

of t experts for the alternative xi under the criterion cj . From the hesitant fuzzy

linguistic decision matrices Rk = (Hij
S

(k)
)n×m, k = 1, 2, . . . , t, we can construct a

collective decision matrix R = (Hij
S )n×m.
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In comparison of the above method with the existing indirect methods for con-

structing the collective decision matrix R, the indirect methods use linguistic oper-

ators to aggregate individual decision matrices Rk, while in our construction of R,

we use EHFLTSs to collect evaluations of all the experts. Our method can elimi-

nate the aggregation step on individual decision matrices. Moreover, the obtained

EHFLTS decision matrix involves all the possible evaluations of experts, and thus

avoids the possible loss of information. In addition, experts can express their opin-

ions by flexible forms such as single linguistic terms or HFLTSs, which is beneficial

for experts to make evaluations in real applications. We also note that the process

doesn’t consider the relative importance of experts and is suitable for the situation

where experts are of equal importance, such as anonymous evaluations. The de-

tailed comparison combined with examples with the existing methods will be made

in Subsec. 5.1.

4.2. Assign the objective importance weights of criteria based on

distance measures

In Subsec. 4.1, we get the collective decision matrix R. In order to rank the al-

ternatives, the relative importance weights of criteria need to be considered and

incorporated into the evaluations of alternatives under criteria. These weights may

play a dominant role toward the final ranking of the alternatives. In general, the

weights of criteria are predefined according to an expert’s or a decision-maker’s

knowledge, which are regarded as one kind of subjective weights of the criteria.

Compared with the predefined weights, the evaluation information of alternatives

under each criterion may reflect its relative importance in a more objective sense.

The weights of criteria derived from evaluation information are referred as the ob-

jective weights of criteria.

We now develop a method to determine the objective weights of criteria from

the collective decision matrix R = (Hij
S )n×m. For a criterion cj , we use distances

between the evaluation values H
ij
S (i = 1, 2, . . . , n) of alternatives to reflect the

deviation degree of these evaluation values under this criterion. Then the bigger

the deviation under the criterion, the more important the criterion acts for the

overall aggregation values. So we should assign a bigger weight toward this criterion.

According to the above analysis, we give the following steps to assess the objective

weights of criteria.

Approach to assessing the objective weights of criteria is as follows:

1. Calculate the distances d(Hij
S , H

kj
S ) between H

ij
S and H

kj
S (1 ≤ i, k ≤ n) by

Formula (1), (2) or (3).

2. Calculate the objective weights w1
j of the criteria cj (j = 1, 2, . . . ,m):

ω1
j =

∑n

i=1

∑n

k=1 d(H
ij
S , H

kj
S )

∑m

j=1

∑n

i=1

∑n

k=1 d(H
ij
S , H

kj
S )

=

∑n−1
i=1

∑n

k=i+1 d(H
ij
S , H

kj
S )

∑m

j=1

∑n−1
i=1

∑n

k=i+1 d(H
ij
S , H

kj
S )

. (4)
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4.3. Rank alternatives based on the rationale of TOPSIS

TOPSIS developed by Hwang and Yoon17 is a practical technique to solve MCDM

problems. It is based on the idea that the alternative having the shortest distance

from the positive ideal solution, and, on the other hand, the farthest distance from

the negative ideal solution is the optimal alternative. TOPSIS has the following

advantages: (1) having intuitive geometric significance; (2) making relatively suffi-

cient use of the original data and having a less information loss. Therefore, TOPSIS

has been successfully applied to many areas, such as, supplier selection,3,6 trans-

portation,18 human resource management,7 product design21 and so on. In addition,

the rationale of TOPSIS has been used to deal with different decision-making in-

formation, such as linguistic information,41 interval data,19 fuzzy numbers,5,23,38

vague sets39 and intuitionistic fuzzy sets.3 In this subsection, we will apply the

proposed distance measures of EHFLTSs and the rationale of TOPSIS to ranking

alternatives.

Suppose that w = (w1, w2, . . . , wm) is the weighting vector of criteria, and

R = (Hij
S )n×m is the collective decision matrix. Approach to ranking alternatives

is as follows:

1. Determine a generalized hesitant fuzzy linguistic positive ideal solution

(GHFLPIS) R+ = (H+1
S , H+2

S , . . . , H+m
S ) and a hesitant fuzzy linguistic nega-

tive ideal solution (GHFLNIS) R− = (H−1
S , H−2

S , . . . , H−m
S ). The elements H+j

S

and H
−j
S (j = 1, 2, . . . ,m) are defined as follows:

H
+j
S = H

1j
S ∨H

2j
S ∨ · · · ∨H

nj
S if Cj is a benefit criterion and H

+j
S = H

1j
S ∧

H
2j
S ∧ · · · ∧H

nj
S if Cj is a cost criterion;

H
−j
S = H

1j
S ∧H

2j
S ∧ · · · ∧H

nj
S if Cj is a benefit criterion and H

−j
S = H

1j
S ∨

H
2j
S ∨ · · · ∨H

nj
S if Cj is a cost criterion.

2. For alternative xi, let Ri = (Hi1
S , Hi2

S , . . . , Him
S ), i = 1, 2, . . . , n. Calculate the

weighted distances d(Ri, R
+) and d(Ri, R

−):

d(Ri, R
+) =

m
∑

k=1

ωkd(H
ik
S , H+k

S ), d(Ri, R
−) =

m
∑

k=1

ωkd(H
ik
S , H−k

S ).

3. Calculate the closeness coefficients Di of alternatives xi(i = 1, 2, . . . , n):

Di =
d(Ri, R

+)

d(Ri, R−) + d(Ri, R+)
. (5)

4. Rank the alternatives according to the principle that the smallerDi is, the better

the alternative xi is.

4.4. An algorithm to deal with hesitant fuzzy linguistic decision

information

From the above discussion about the group decision model, we develop the following

Algorithm I to solve the above group decision-making problem with hesitant fuzzy

linguistic information.
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Algorithm I

Step 1. Based on the hesitant fuzzy linguistic decision matricesRk = (Hij
S

(k)
)n×m,

k = 1, 2, . . . , t, construct a collective decision matrixR = (Hij
S )n×m, where

H
ij
S =

⋃t

k=1 H
ij
S

(k)
.

Step 2. Use the steps in Subsec. 4.2 to assess the objective weighting vector

w1 = (w1
1 , w

1
2 , . . . , w

1
m)T of criteria. Suppose the subjective weighting vec-

tor w2 = (w2
1 , w

2
2 , . . . , w

2
m)T of criteria is given. Integrate the objective

weights w1
j and the subjective weights w2

j into the weights wj of the cri-

teria cj :

wj = γw1
j + (1 − γ)w2

j , γ ∈ [0, 1], j = 1, 2, . . . ,m. (6)

Suppose the subjective weighting vector w2 = (w2
1 , w

2
2 , . . . , w

2
m)T of

criteria is completely unknown. Then we can let γ = 1 in Eq. (6). So the

weighting vectorw = (w1, w2, . . . , wm)T is equal to the objective weighting

vector w1.

Step 3. For the generalized hesitant fuzzy linguistic decision matrix R and the im-

portance weighting vector w of criteria, we can apply the steps in Subsec.

4.3 to ranking the alternatives.

We note that if there is only one evaluator or expert to provide evaluations of

alternatives xi (i = 1, 2, . . . , n) under criteria cj (j = 1, 2, . . . ,m), then only Step 2

and Step 3 need to be considered.

5. Illustrative Examples

In this section, the proposed Algorithm I is demonstrated by two illustrative exam-

ples and the results are compared with those obtained by the methods in Refs. 1,

29, 31 and 40.

5.1. A group decision-making example

Example 1. Let us consider a practical linguistic group decision-making problem.

A manufacturing company searches the best global supplier for one of its most

critical parts used in assembling process among three suppliers xi(i = 1, 2, 3). The

criteria considered in selection are capacity of the production (c1), capacity of ac-

curacy (c2), supplier’s credibility (c3) and cost performance of the product (c4).

Suppose there are three experts d1, d2, d3 to provide evaluations by using the lin-

guistic term set S = {s0: nothing, s1: very low, s2: low, s3: medium, s4: high, s5:

very high, s6: perfect}. The decision matrices Rk = (Hij
S

(k)
)3×4 (k = 1, 2, 3) are as

follows:

R1 =





{s4, s5} {s3} {s4} {s3}

{s5} {s5} {s3} {s4}

{s4} {s3} {s5} {s3}



 , R2 =





{s5, s6} {s2} {s3, s4} {s2}

{s5} {s5} {s3} {s4}

{s3} {s2, s3} {s5} {s1}



 ,
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R3 =





{s4} {s2} {s4} {s2}

{s5} {s5} {s3} {s3}

{s3} {s4} {s5} {s1}



 .

Suppose the subjective weights of the criteria cj(j = 1, 2, 3) are completely

unknown, then the following steps are given to get the ranking order of alternatives.

5.1.1. Illustration of the proposed algorithm

By Step 1 in Algorithm I, the overall evaluations Hij
S (i = 1, 2, 3; j = 1, 2, 3, 4) of xi

with respect to cj are formed directly by the union of three experts’ evaluations. For

example, three experts’ evaluations of alternative x1 with respect to criterion c1 are

{s4, s5}, {s5, s6} and {s4}, respectively. Then the overall evaluation is formed by

{s4, s5}
⋃

{s5, s6}
⋃

{s4}, which is equal to the EHFLTS {s4, s5, s6}. So the resultant

decision matrix R is as follows:

R =





{s4, s5, s6} {s2, s3} {s3, s4} {s2, s3}

{s5} {s5} {s3} {s3, s4}

{s3, s4} {s2, s3, s4} {s5} {s1, s3}



 .

By Step 2, we calculate the objective weights of criteria. Suppose we adopt the

distance measure d2 defined by Formula (2) and the decision maker is optimistic.

Then we can obtain the distance matrix shown in Table 1:

Table 1. Distance matrix.

d2(Hi1
S
, Hk1

S
) d2(Hi2

S
,Hk2

S
) d2(Hi3

S
, Hk3

S
) d2(Hi4

S
,Hk4

S
)

(i = 1, k = 2) 0.1361 0.4249 0.1178 0.1667

(i = 1, k = 3) 0.2357 0.0962 0.2635 0.1178

(i = 2, k = 3) 0.2635 0.3600 0.3333 0.2635

From Formula (4), we obtain the objective weighting vector ω1 of criteria:

ω1 = (0.2286, 0.3170, 0.2572, 0.1972)T.

Suppose γ = 1 in Eq. (6), then the weighting vector ω of criteria is equal to their

objective weighting vector ω1.

By Step 3, we have R+ = ({s5, s6}, {s5}, {s5}, {s3, s4}) and R− = ({s3, s4},

{s2, s3}, {s3}, {s1, s2, s3}). Thus,

d2(R1, R
+) = 0.2665, d2(R1, R

−) = 0.1110, d2(R2, R
+) = 0.1126 ,

d2(R2, R
−) = 0.2519, d2(R3, R

+) = 0.2423, d2(R3, R
−) = 0.1352 .

So the closeness coefficients Di of the three suppliers are: D1 = 0.7060, D2 =

0.3091, D3 = 0.6419, and the ranking is x2 ≻ x3 ≻ x1.
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5.1.2. Comparison analysis and discussion

Three methods in Refs. 1, 40 and 42 are respectively proposed to solve the above

group decision-making problem. The method in Ref. 42 is a direct method, while

the method in Refs. 1 and 40 are indirect approaches like Algorithm I. Now, we

conduct a comparison with the methods in Refs. 1 and 40 based on Example 1.

In Ref. 1, a method based on TOPSIS was proposed to aggregate the evaluation

information of experts represented by HFLTSs. By this method, we can get the

collective decision matrix R, the positive ideal solution R+ and the negative ideal

solution R−:

R =





[s4, s5] [s2, s3] [s4, s4] [s2, s3]

[s5, s5] [s5, s5] [s3, s3] [s3, s4]

[s3, s4] [s3, s4] [s5, s5] [s1, s3]



 ,

R+ = ([s5, s6], [s5, s5], [s5, s5], [s4, s4]),

R− = ([s3, s3], [s2, s2], [s3, s3], [s1, s1]) .

For two linguistic intervals I1S and I2S , the distance d(I1S , I
2
S) is defined by |q′ −

q|+|p′ − p|, where I1S = [sp, sq] and I2S = [sp′ , sq′ ]. By this distance formula, the

relative closenesses RCi, defined by d(Ri,R
−)

d(Ri,R−)+d(Ri,R+) , of alternatives xi to the ideal

solutions are as follows: RC1 = 0.4286, RC2 = 0.7143, RC3 = 0.4762. So the ranking

of three alternatives is x2 ≻ x3 ≻ x1, which is the same as that of Algorithm I.

Beg and Rashid’s method in Ref. 1 and the proposed method in this paper are

all based on TOPSIS to solve hesitant fuzzy linguistic decision-making problems.

However, they differ in the following aspects: the aggregation method of experts’

information, the constructions of the positive ideal solution R+ and the negative

ideal solution R−, and the distance formulas used in the two methods. Beg and

Rashid used aggregation operators to derive the evaluation matrix R, the positive

ideal solution R+ and the negative ideal solution R−. Then the distance formula

defined for linguistic intervals is used to rank alternatives. Notably, the elements

of the evaluation matrix R, the positive ideal solution R+ and the negative ideal

solution R− are all linguistic intervals. The transformation from discrete linguistic

terms to intervals is by nature inappropriate.

On the other hand, Beg and Rashid’s aggregation operator, by which the col-

lective matrix is derived, is insensitive to the change of aggregated elements. In

Ref. 1, the collective evaluation matrix R = ([spij
, sqij ]) is derived by the formu-

las: spij
= min{mintk=1 H

ij
S

(k)+
,maxtk=1 H

ij
S

(k)−
} and sqij = max{mintk=1 H

ij
S

(k)+
,

maxtk=1 H
ij
S

(k)−
}. For experts’ evaluations {s4, s5}, {s5, s6} and {s4} to alternative

x1 under criterion c1 in Example 1, the aggregation result is [s4, s5]. If we change

the evaluations of experts e1 and e3 from {s4, s5} and {s4} to {s2, s3, s4, s5} and

{s2, s3, s4} or {s1, s2, s3, s4, s5} and {s0, s1, s2, s3, s4}, respectively, then the aggre-

gation result is still the linguistic interval [s4, s5]. The great change of two experts’

evaluations don’t cause the change of the aggregation result. Obviously it is not

reasonable.
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The proposed method in this paper uses EHFLTSs to get the evaluation matrix

that involves all the evaluations of experts and avoids the loss and distortion of

information. The weights of criteria can be derived by the subjective and objective

information. The positive ideal solution R+ and the negative ideal solution R− are

obtained by the operations of max-union and min-intersection on HFLTSs. The

distance measures for EHFLTSs and TOPSIS are used to rank alternatives.

Wang40 proposed a method to solve the above linguistic group decision-making

problem. Following Wang’s method, the weights of criteria need to be given firstly,

then the problem can be processed by the following steps.

Step 1. Based on the hesitant fuzzy linguistic decision matricesRk = (Hij
S

(k)
)n×m,

k = 1, 2, . . . , t, construct a collective decision matrix R = (Hij
S )n×m, where

H
ij
S =

⋃t

k=1 H
ij
S

(k)
.

Step 2. Utilize the EHFLWA operator to obtain the collective evaluation values

of the alternatives.

Step 3. Use the expected linguistic terms and hesitation degrees of the collective

evaluation values to rank the alternatives.

By these steps and the weighting vector ω1 = (0.2286, 0.3170, 0.2572, 0.1972)T ob-

tained by Algorithm I, we obtain the collective evaluation values of the alternatives:

H1 = {s2.71, s2.91, s2.94, s2.97, s3.03, s3.14, s3.16, s3.17, s3.20, s3.23, s3.26, s3.29, s3.37,

s3.40, s3.43, s3.46, s3.48, s3.49, s3.52, s3.63, s3.69, s3.71, s3.75, s3.94},

H2 = {s4.09, s4.29},

H3 = {s2.80, s3.03, s3.12, s3.20, s3.35, s3.43, s3.44, s3.51, s3.66, s3.74, s3.83, s4.06}.

The expected linguistic terms are E(H1) = s3.33, E(H2) = s4.19, E(H3) = s3.43,

respectively. So the ranking of alternatives is x2 ≻ x3 ≻ x1, which is the same as

that obtained by Algorithm I.

Comparing Algorithm I and Wang’s method,40 we find that both use ELFLTSs

to collect the linguistic information of a group and obtain a collective decision ma-

trix. But the following steps are completely different from Wang’s method. Wang

used a given weighting vector of criteria and the EHFLWA operator to aggregate

EHFLTSs, and adopted a method based on expected linguistic term and hesita-

tion degree of a virtual linguistic term set to rank alternatives. While Algorithm

I uses the distance measures for EHFLTSs and the rationale of TOPSIS to rank

alternatives. Moreover, Algorithm I can be used to derive weights of criteria accord-

ing to the subjective and objective information. In Wang’s method, the weights of

criteria can be only given. His paper did not give any method to derive weights.

We also note from the above computation that, by Wang’s operators, the obtained

overall evaluation values of alternatives are relatively tedious and a comparison

method need be chosen to rank the aggregation values of alternatives. Our proposed
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algorithm can avoid the tedious aggregation values and the choice of comparison

method for the aggregation values, and is more simple and effective.

5.2. A hesitant fuzzy linguistic decision making example

We now apply Algorithm I to the example used by Rodŕıguez et al.31

Example 2. Let C = {c1, c2, c3} be a set of benefit criteria, X = {x1, x2, x3}

be a set of alternatives and S = {s0: nothing(n), s1: very low(vl), s2: low(l), s3:

medium(m), s4: high(h), s5: very high(vh), s6: perfect(p)} be the linguistic term

set used to generate the linguistic expressions. The assessments given by an expert

to the alternatives are shown in Table 2.

Table 2. Assessments provided for the decision problem.

c1 c2 c3

x1 between vl and m between h and vh h
x2 between l and m m lower than l
x3 greater than h between vl and l greater than h

By the transformation function EGH
defined in,31 we transform the linguistic

expressions into HFLTSs which are shown in Table 3.

Table 3. Assessments transformed into HFLTSs.

c1 c2 c3

x1 {s1, s2, s3} {s4, s5} {s4}
x2 {s2, s3} {s3} {s0, s1, s2}
x3 {s4, s5, s6} {s1, s2} {s4, s5, s6}

Suppose ω2 = (0.2, 0.3, 0.5)T is the subjective weighting vector of the criteria.

We now apply Algorithm I to ranking the alternatives.

In Eq. (6) of Algorithm I, we suppose γ = 0. So the weighting vector ω of criteria

is equal to the subjective weighting vector ω2.

Suppose the decision maker is optimistic. From R+ = ({s4, s5, s6}, {s4, s5},

{s4, s5, s6}) and R− = ({s1, s2, s3}, {s1, s2}, {s0, s1, s2}), we get the following

weighted distances shown in Table 4 by using distance measures d1, d2 and d3,

respectively.

Table 4. Weighted distances.

i d1(Ri, R
+) d1(Ri, R

−) d2(Ri, R
+) d2(Ri, R

−) d3(Ri, R
+) d3(Ri, R

−)

1 0.1833 0.4000 0.2076 0.4091 0.2667 0.4833
2 0.4861 0.0972 0.4917 0.1063 0.5333 0.1333
3 0.1500 0.4333 0.1500 0.4333 0.1500 0.4333
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According to Formula (5), we calculate the closeness coefficients of the alterna-

tive xi (i = 1, 2, 3) and rank the alternatives. The results are exhibited in Table 5.

Table 5. Closeness coefficients and ranking order of alternatives.

i D1
i

D2
i

D3
i

1 0.3143 0.3366 0.3556

2 0.8333 0.8223 0.8000

3 0.2571 0.2571 0.2571

Rankings x3 ≻ x1 ≻ x2 x3 ≻ x1 ≻ x2 x3 ≻ x1 ≻ x2

From Table 4, it is noted that for the alternative xi (i = 1, 2, 3), d1(Ri, R
+) ≤

d2(Ri, R
+) ≤ d3(Ri, R

+) and d1(Ri, R
−) ≤ d2(Ri, R

−) ≤ d3(Ri, R
−). By using

three kinds of distance measures of HFLTSs to respectively calculate the closeness

coefficients of the alternative xi, the obtained results may be different shown in

Table 5. However, in three cases, the ranking order of alternatives is the same,

which is x3 ≻ x1 ≻ x2.

For Example 2, the method in Ref. 31 didn’t consider the weights of criteria

or supposed that the criteria have equal importance. By using Algorithm I, we

can flexibly handle the weights of criteria, which is very important in solving a

decision-making problem.

Liu and Rodŕıguez29 also proposed a method based on TOPSIS to solve hesitant

fuzzy multi-criteria decision-making problems. We now conduct a comparison with

this method.

By the method in Ref. 29, the assessments of experts represented by HFLTSs

are translated into fuzzy envelopes represented by trapezoidal fuzzy membership

functions, which are shown in Table 6.

Table 6. Assessments transformed into fuzzy envelopes.

c1 c2 c3

x1 (0, 0.298, 0.364, 0.67) (0.5, 0.67, 0.83, 1) (0.33, 0.5, 0.5, 0.67)

x2 (0.17, 0.33, 0.5, 0.67) (0.17, 0.33, 0.33, 0.5) (0, 0, 0.1478, 0.5)

x3 (0.5, 0.8522, 1, 1) (0, 0.17, 0.33, 0.5) (0.5, 0.8522, 1, 1)

Let R+ = ((1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1)) and R− = ((0, 0, 0, 0),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)). By the distance formula d(A,B) = 1
4 (|a1 −

a2|+|b1 − b2|+|c1 − c2|+|d1 − d2|) for two trapezoidal fuzzy numbers A =

(a1, b1, c1, d1) and B = (a2, b2, c2, d2), the closeness coefficients CCi, defined by
d(Ri,R

−)
d(Ri,R−)+d(Ri,R+) of the three alternatives can be obtained as CC1 = 0.5416,

CC2 = 0.2642, CC3 = 0.6616 and the ranking is x3 ≻ x1 ≻ x2, which is the

same as that of Algorithm I.



May 11, 2015 15:2 118-ijufks S0218488515500166 page 395

A Novel Linguistic Group Decision-Making Model 395

Both Algorithm I and Liu and Rodŕıguez’s method29 are based on TOPSIS

and can be used to solve multi-criteria decision-making problems with the hesitant

fuzzy linguistic information, while the basis for the two methods is not alike. Using

Liu and Rodŕıguez’s method, we first need to translate an HFLTS into a fuzzy

envelope, which is a trapezoidal fuzzy membership function obtained by aggregating

the fuzzy membership functions of the linguistic terms in the HFLTS. Then the

fuzzy TOPSIS is used to rank alternatives. In the process of the translation from

an HFLTS into a fuzzy envelope, the different importance of the linguistic terms in

an HFLTS is supposed, and is reflected in the calculation process of the parameters

of the trapezoidal fuzzy membership function using the OWA operator. By contrast,

Algorithm I deals with linguistic terms in an HFLTS as possible evaluation values

with equal importance.

Compared with the considered methods, Algorithm I avoids choosing different

operators to aggregate the evaluations represented by HFLTSs or single linguistic

terms and does not need to deal with the HFLTSs as linguistic intervals or fuzzy

envelopes, so it can avoid the loss and distortion of information. It can also assess

the importance weights of criteria according to their subjective and objective in-

formation. Consequently, Algorithm I is more flexible and more precise in dealing

with linguistic decision making problems.

6. Conclusions

The theory of HFLTSs has wide application prospect in objectively dealing with the

situations where people have hesitancy in providing their linguistic assessments, but

it has some limitations in describing group linguistic decision making information.

Wang40 introduced the notion of EHFLTSs by removing the consecution condition

in HFLTSs, and proposed some operators for EHFLTSs to solve hesitant fuzzy lin-

guistic group decision-making problems. In this paper, we have introduced the ax-

iomatic definition of the distance measure for EHFLTSs and three concrete distance

formulas, and then developed a new method to deal with group decision-making

problems with hesitant fuzzy linguistic information. By the proposed method, lin-

guistic evaluations of the evaluators are collected by EHFLTSs which could elim-

inate the aggregation step on individual decision matrices and avoid the possible

loss of information; the importance weights of criteria can be assessed according

to their subjective and objective information and the alternatives can be ranked

based on the rationale of TOPSIS. Even for the multi-criteria decision making

problems with hesitant fuzzy linguistic information, the proposed method is also

suitable. The comprehensive and detailed comparison analysis with the existing

methods has been made and the results have shown that the proposed method is

more flexible and effective in managing linguistic decision making problems.
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