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Entropy measures for hesitant fuzzy sets
and their application in multi-criteria
decision-making
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Abstract. Entropy is used to measure the uncertain degree of fuzzy sets and has been widely used in many fields. This
paper introduces an axiomatic definition of entropy measure and a novel entropy formula for hesitant fuzzy elements (HFEs).
Afterwards, a general form of entropy measures for HFEs is proposed, from which a family of concrete entropy formulas for
HFEs can be derived. Compared with the existing ones, these formulas can measure both fuzziness and hesitation of HFEs,
as a result, the uncertain information can be described in a more appropriate manner. The proposed axiomatic definition
and entropy formulas are used to define the entropy measure for hesitant fuzzy sets. A multi-criteria decision making model
which uses the proposed entropy measures for HFEs to compute the criteria weights and obtain a ranking of alternatives is
introduced.
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1. Introduction

Since Zadeh [35] introduced fuzzy sets, many gen-
eralized forms have been proposed, among which
there are interval-valued fuzzy sets (IVFSs) [3],
intuitionistic fuzzy sets (IFSs) [1], interval-value
intuitionistic fuzzy sets (IVIFS) [2], vague sets [10],
type-2 fuzzy sets [17], type-n fuzzy sets [7] and fuzzy
multisets [18]. All these extensions are based on the
same rationale that defining a fuzzy set is not an easy
task because there is no a clear way to assign the
membership degree of an element to a fixed set [23,
24].

Recently, a new extension of fuzzy sets, so-called
Hesitant Fuzzy Set (HFS), has been proposed in [23,
24]. The motivation is that when defining the mem-
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bership of an element, the difficulty of establishing
the membership degree is not because there is a mar-
gin of error, or some possibility distribution on the
possible values, but because there is a set of possible
values [23]. HFSs can be used when experts hesi-
tate among several values to provide their preferences
over the alternatives and the use of only one value is
not enough to reflect their knowledge in a suitable
way.

In the last years, HFSs have attracted much atten-
tion of researchers and different proposals have been
introduced in the literature such as, distance mea-
sures, similarity measures, and entropy measures [14,
31, 32], different aggregation operators [12, 13, 29],
decision making methods that deal with HFS [4,
26–28], even it has been extended to deal with lin-
guistic information [15, 16, 20].

This paper is focused on the entropy measure
for HFSs that is a very important notion for mea-
suring uncertain information, along with a lot of
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research productions of entropy measures for FSs
and IFSs. Zadeh first used fuzziness in an entropy
measure which was mentioned in [35]. Then, De
Luca and Termini [6] proposed the axioms that
the fuzzy entropy should comply and they defined
the entropy of a fuzzy set based on Shannon’s
function. Yager [33] presented an entropy measure
to view the fuzziness degree of the fuzzy set in
terms of a lack of distinction between the fuzzy
set and its complement. Other entropies for fuzzy
sets with different points of views can be found in
[8, 19, 22].

In hesitant fuzzy environment, Xu and Xia [32]
proposed an entropy axiomatic definition and some
formulas for hesitant fuzzy elements (HFEs). Farha-
dinia [9] presented some counterexamples to point
out that the entropies proposed in [32] cannot discrim-
inate some HFEs, even though they are apparently
different and proposed a series of entropy measures
for HFSs, which are based on the distance measures
for HFSs. However, it can be shown that Farhadinia’s
entropy measures fail to discriminate HFEs that have
the same distance with the HFE {0.5}. Therefore,
in order to overcome this shortcoming, this paper
aims to propose new entropy axiomatic definitions
and construct entropy formulas of HFEs and HFSs,
which can reflect the uncertainty of HFEs and HFSs
in a proper way. Based on these entropy formulas,
an approach to solve multi-criteria decision-making
problems with unknown criteria weights is intro-
duced.

HFS is a simple and effective tool used to
express experts’ hesitation in decision-making. Sup-
pose two experts discuss the membership degree
of an alternative for a criterion, and one of them
wants to assign 0.1 and the other 0.8. Then the
membership degree of the alternative for the cri-
terion might be described by the HFE {0.1, 0.8},
which describes the uncertain information of experts’
preference. Therefore, it is necessary to depict the
uncertainty degree associated to the HFE {0.1, 0.8}
in an appropriate way. Since HFS is a general-
ized form of FS, the fuzziness as a characteristic
of FS, is also an important index for HFS. Besides,
HFE has its own characteristic, that is the hesita-
tion among the possible membership degrees 0.1
and 0.8. Thus, in order to depict the uncertainty
reflected by an HFE, the fuzziness and hesitation
of information should be considered. Therefore, the
proposed axiomatic definitions and entropy measures
can depict both fuzziness and hesitation of HFEs
and HFSs.

The rest of this paper is organized as follows.
Section 2 reviews some concepts of HFSs and dis-
tance measures of HFSs. Section 3 proposes a new
axiomatic definition and an entropy measure for
HFEs. Subsequently, a family of entropy measures
based on the previous one is introduced. These
proposals are generalized to define an axiomatic
definition and entropy measures for HFSs. Section
4 compares the proposed axiomatic definition of
entropy and concrete entropy formulas for HFEs
with those defined in [9, 32]. Section 5 puts forward
a method for multi-criteria decision-making which
uses entropy measures for HFSs to obtain a ranking
of alternatives. Section 6 introduces an illustrative
example to demonstrate the practicality and effec-
tiveness of the proposed formulas in a multi-criteria
decision-making problem. Finally, this paper is con-
cluded in Section 7.

2. Preliminaries

This section reviews some basic concepts, such as
Hesitant Fuzzy Sets (HFSs) [23] and distance mea-
sures for HFSs [31]. Throughout this paper, X =
{x1, x2, . . . , xn} is used to denote the universe of
discourse.

In [23] it was introduced a new extension of
fuzzy set with the goal of modelling the uncertainty
originated by the hesitation that might arise in the
assignment of the membership degrees of the ele-
ments to a fuzzy set.

Definition 1. [23] Let X be a discourse set. A HFS
on X is defined in terms of a function h that when is
applied to X, it returns a non-empty subset of values
in the interval [0, 1].

To be easily understood, Xia and Xu [30] expressed
an HFS by

A = {〈xi, hA(xi)〉|xi ∈ X}, (1)

where hA(xi) is a set of some values in [0, 1], denoting
the possible membership degrees of the element xi ∈
X to the set A. Especially, if there is only one value
in each hA(xi)(i = 1, 2, . . . , n), then the HFS A is
reduced to a fuzzy set, which indicates that fuzzy
sets are a special type of HFSs. HFS(X) is the set of
all the HFSs on X.

For convenience, Xia and Xu [30] named hA(xi),
abbreviated to h, a hesitant fuzzy element (HFE). For
any HFE h = {h1, h2, . . . , hlh}, we assume that hi <

hj , for ∀i < j(i, j = 1, 2, . . . , lh) in the whole paper,
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where lh, abbreviated to l in the case of no confusion,
is the number of values in h and is called the length
of h. H is the set of all the HFEs

Example 1. Let X = {x1, x2, x3} be the discourse
set. Then A = {〈x1, {0.2, 0.3}〉, 〈x2, {0.1, 0.2}〉,
〈x3, {0.6, 0.7, 0.8}〉} is an HFS on X.

Let A = {〈xj , hA(xj)〉|xj ∈ X} and B = {〈xj ,
hB(xj)〉|xj ∈ X} be two HFSs. In general, the lengths
of hA(xj) and hB(xj) may be different. Let lxj =
max{lhA(xj), lhB(xj)}. In order to operate correctly,
hA(xj) and hB(xj) should have the same length lxj . To
do this, the shorter one is extended until the lengths of
both are the same. The best way to extend the shorter
one is to add the same element in it until the changed
HFE has the same length as the longer one. Any value
in the shorter one might be added to extend it. In this
paper, it is considered an optimistic point of view in
which the shorter one is extended by repeating its
maximum element.

For two HFSs A and B, we assume that hA(xj)
and hB(xj) have the same length lxj . Let hi

A(xj)
and hi

B(xj) be the ith smallest values in hA(xj) and
hB(xj), respectively. Xu and Xia [31] gave a variety
of distance measures for HFSs, some of which are
described as follows:

– The generalized hesitant normalized distance:

dgh(A, B) =

⎧⎨
⎩

1

n

n∑
j=1

⎛
⎝ 1

lxj

lxj∑
i=1

∣∣hi
A(xj) − hi

B(xj)
∣∣λ

⎞
⎠

⎫⎬
⎭

1
λ

(2)
where λ > 0.

– The generalized hesitant weighted distance:

dghw(A, B) =

⎧⎨
⎩

n∑
j=1

ωj

⎛
⎝ 1

lxj

lxj∑
i=1

∣∣hi
A(xj) − hi

B(xj)
∣∣λ

⎞
⎠
⎫⎬
⎭

1
λ

(3)
where λ > 0, and ωj(j = 1, 2, . . . , n) is the
weight of the element xj with ωj ∈ [0, 1] and∑n

j=1 ωj = 1.

More information about distance measures for
HFS can be found in [21, 31].

3. Entropy measure for HFSs

In order to investigate new entropy measures for
HFSs, first some entropy measures for HFEs are stud-
ied and a new axiomatic definition of the entropy

measure for HFEs is proposed. Furthermore, we put
forward a family of entropy measures and a series
of entropy formulas for HFEs. Finally, entropy mea-
sures for HFSs based on the entropy measures for
HFEs are proposed. The efficiency of the proposed
entropy measures is demonstrated through compar-
isons with some existing entropy measures in [9] and
[31].

3.1. Entropy measures for HFEs

For an HFE h = {h1, h2, . . . , hl}, its uncertainty
of information should include two facts: the fuzziness
and hesitation of information. The fuzziness is dom-
inated by the difference between the averaging value
of the elements in h and the most fuzzy value {0.5}.
The hesitation is reflected by the deviation degree
of the elements in h. The averaging value and the
deviation function value of h are defined as follows.

Definition 2. [12] Let h = {h1, h2, . . . , hl} be an
HFE, then

1. the averaging value (score function value) of an
HFE h is defined as

θ(h) = 1

l

l∑
i=1

hi. (4)

2. the deviation function value of an HFE h is
defined as

η(h) = 2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

(hj − hi). (5)

Based on the score function θ(h) and the devia-
tion function η(h), an entropy axiomatic definition
for HFEs is proposed.

Definition 3. The entropy on an HFE h is a
real-valued function E : H → [0, 1], satisfying the
following axiomatic requirements:

(E1) E(h) = 0, if and only if h = {0} or h = {1};
(E2) E(h) = 1, if and only if θ(h) = 0.5 ;
(E3) E(h1) ≤ E(h2), if θ(h1) ≤ θ(h2) and η(h1) ≤

η(h2) for θ(h2) ≤ 0.5, or θ(h1) ≥ θ(h2) and
η(h1) ≤ η(h2) for θ(h2) ≥ 0.5;

(E4) E(h) = E(hc), where hc is the complement of
an HFE h and is defined by hc = ⋃

γ∈h{1 − γ}.

Remark 1. The axiomatic requirement (E3) reflects
that for any two HFEs h1 and h2, if θ(h1) is further
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from 0.5 than θ(h2), that is, |θ(h1) − 0.5| > |θ(h2) −
0.5|, and the deviation function value of h1 is less
than η(h2), then the uncertainty of h1 should be less
than h2.

The new entropy measure for HFEs is defined and
its properties are studied.

Theorem 1. For each HFE h ∈ H , E(h) is defined by

E(h) = 1 − | cos(θ(h) · π)| + η(h)

1 + η(h)
. (6)

Then E is an entropy measure for HFEs.

Proof. It is sufficient to show the mapping E(h),
defined by Equation 6, for satisfying the conditions
(E1)–(E4) in Definition 3.

Since θ(h) = 1
l

∑l
i=1 hi and

η(h) = 2
l(l−1)

∑l−1
i=1

∑l
j=i+1(hj − hi) for an HFE

h = {h1, h2, . . . , hl}, we have 0 ≤ θ(h) ≤ 1, 0 ≤
η(h) ≤ 1. Hence,

0 ≤ 1 − | cos(θ(h) · π)| + η(h)

1 + η(h)
≤ 1.

(E1) E(h) = 1−| cos(θ(h)·π)|+η(h)
1+η(h) = 0 if and only if

| cos(θ(h) · π)| − η(h) = 1. Since 0 ≤ η(h) ≤
1 and 0 ≤ | cos(θ(h) · π) | ≤ 1, we have
−1 ≤ | cos(θ(h) · π)| − η(h) ≤ 1. Therefore,
| cos(θ(h) · π)| − η(h) = 1 if and only if η(h) =
0 and | cos(θ(h) · π)| = 1, i.e., h = {0} or h =
{1}.

(E2) E(h) = 1−| cos(θ(h)·π)|+η(h)
1+η(h) = 1 if and only if

cos(θ(h) · π) = 0, that is, θ(h) = 0.5.

(E3) Let θ(h) = θ, η(h) = η, the Equation 6 can be
noted as E(h) = E(θ, η) = 1−| cos(θπ)|+η

1+η
.

The partial derivative of E(θ, η) with respect to
θ is as follows,

∂E(θ, η)

∂θ
=

⎧⎨
⎩

π sin(θπ)(1+η)
(1+η)2 , 0 < θ ≤ 0.5,

−π sin(θπ)(1+η)
(1+η)2 , 0.5 ≤ θ < 1.

Since 0 < sin(θπ) ≤ 1 and 1 ≤ 1 + η ≤ 2 for
0 < θ < 1, we can get ∂E(θ,η)

∂θ
> 0 if 0 <

θ ≤ 0.5; ∂E(θ,η)
∂θ

< 0 if 0.5 ≤ θ < 1. Therefore,
E(θ, η) is strictly monotone increasing with
respect to θ ∈ (0, 0.5], and strictly monotone
decreasing with respect to θ ∈ [0.5, 1).
On the other hand, the partial derivative of
E(θ, η) with respect to η ∈ [0, 1] is denoted as
follows,

∂E(θ, η)

∂η
= | cos(θπ)|

(1 + η)2 .

Clearly, ∂E(θ,η)
∂η

≥ 0 and E(θ, η) is monotoni-
cally increasing with respect to η ∈ [0, 1].
From the above discussion, it is easy to get that
if θ(h1) ≤ θ(h2) ≤ 0.5 and η(h1) ≤ η(h2), then
E(θ(h1), η(h1)) ≤ E(θ(h1), η(h2)) ≤ E(θ(h2),
η(h2)), that is, E(h1) ≤ E(h2); if θ(h1) ≥ θ(h2)
≥ 0.5 and η(h1) ≤ η(h2), then E(θ(h1), η(h1))
≤ E(θ(h1), eta(h2)) ≤ E(θ(h2), η(h2)), that is,
E(h1) ≤ E(h2).

(E4) For an HFE h = {h1, h2, . . ., hl}, we have
θ(hc) = 1

l

∑l
i=1(1 − hi) = 1 − θ(h) and η(hc)

= (1 − hl) − (1 − h1) = η(h). Therefore,

E(hc) = 1 − | cos(θ(hc) · π)| + η(hc)

1 + η(hc)

= 1 − | cos((1 − θ(h)) · π)| + η(h)

1 + η(h)

= 1 − | − cos(θ(h) · π)| + η(h)

1 + η(h)

= 1 − | cos(θ(h) · π)| + η(h)

1 + η(h)
= E(h).

Equation 6 satisfies the conditions (E1)–(E4) in
Definition 4, thus E is an entropy measure for
HFEs.

Corollary 1. E(h) is strictly monotone increasing
with respect to θ ∈ (0, 0.5] and strictly monotone
decreasing with respect to θ ∈ [0.5, 1). In addition, it
is monotonically increasing with respect toη ∈ [0, 1].

The conclusion is obviously shown in the proof
process of Theorem 1.

From Corollary 1, we know that the greater the
difference between θ(h) and 0.5 is, the greater E(h)
is; the greater the deviation function value η(h) is,
the greater E(h) is. Since the fuzziness of an HFE
h is dominated by the difference between the score
function value θ(h) and the most fuzzy value 0.5,
and the hesitation is reflected by the deviation func-
tion value η(h), it is obvious that the entropy measure
E(h) considers both the fuzziness and hesitation of an
HFE h.

3.2. A family of entropy measures for HFEs

In this subsection, a family of entropy mea-
sures for HFEs based on the entropy measure E is
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presented. Additionally, four concrete entropy mea-
sures are studied.

Theorem 2. For each HFE h, let

Eg(h) = f (θ(h)) + kη(h)

1 + kη(h)
, (7)

where k ∈ [0, 1]. Then Eg(h) is an entropy measure
for an HFE h, where the function f : [0, 1] → [0, 1]
satisfies the following three conditions:

1. f (1 − x) = f (x);
2. f (x) is strictly monotone increasing with respect

to x ∈ (0, 0.5] and strictly monotone decreasing
with respect to x ∈ [0.5, 1);

3. It interpolates three points, (0, 0), ( 1
2 , 1) and

(1, 0).

Corollary 2. Eg(h) is monotonically increasing with
respect to θ ∈ (0, 0.5], and monotonically decreasing
with respect to θ ∈ [0.5, 1). In addition, it is mono-
tonically increasing with respect to η ∈ [0, 1].

It is noted that if we change the function f (x) in
Eg(h) defined by Equation 7, we can obtain a series
of entropy measures for HFEs. For instance, let k = 1
and let f (x) = 1 − |1 − 2x|, f (x) = 1 − 4(x − 1

2 )2,
f (x) = 1 − | cos(πx)| and f (x) = sin(πx), respec-
tively.

Four different entropy formulas are then obtained:

Eg1(h) = 1 − |1 − 2θ(h)| + η(h)

1 + η(h)
, (8)

Eg2(h) = E(h) = 1 − | cos(θ(h) · π)| + η(h)

1 + η(h)
, (9)

Eg3(h) = E2(h) = sin(θ(h) · π) + η(h)

1 + η(h)
, (10)

Eg4(h) = 1 − 4(θ(h) − 1
2 )2 + η(h)

1 + η(h)
. (11)

Figure 1 shows the graphs of the four entropy for-
mulas, Eg1(h), Eg2(h), Eg3(h) and Eg4(h). To do so,
η(h) is a fixed value.

From Fig. 1, it is easy to see that Eg1(h), Eg2(h),
Eg3(h) and Eg4(h) are all monotonically increas-
ing with respect to θ ∈ (0, 0.5], and monotonically
decreasing with respect to θ ∈ [0.5, 1). However, the
increasing degree and decreasing degree of the four
functions with respect to θ are different. When θ(h)
closes to 0.5, the value of Eg3(h) increases slowly

Fig. 1. Graphic representation of Eg1(h), Eg2(h), Eg3(h) and
Eg4(h).

for θ(h) ≤ 0.5 and decreases slowly for θ(h) > 0.5.
This type of entropy measures such as Eg3(h) is
called conservative. The graph of Eg4(h) is similar to
Eg3(h), soEg4(h) also belongs to this type. Compared
with Eg3(h), Eg2(h) has the opposite characteristic.
When θ(h) closes to 0.5, the value of Eg2(h) increases
quickly for θ(h) ≤ 0.5 and decreases quickly for
θ(h) > 0.5. Simultaneously, when θ(h) stays away
from 0.5, the value of Eg2(h) increases slowly for
θ(h) ≤ 0.5 and decreases slowly for θ(h) > 0.5. This
type of entropy measures such as Eg2(h) is called
risker. Regarding Eg1(h), its graph is a solid line
which increases and decreases steadily. This type
of entropy measure, Eg1(h), is called independent.
Therefore, different type of entropy measures can be
chosen according to the attitude of a decision-maker
for the value θ(h).

3.3. Entropy measures for HFSs

HFEs are the basic elements of HFSs. According to
the entropy measures of HFEs, the entropy axiomatic
definition and some concrete entropy formulas for
HFSs are proposed.

Definition 4. A real-valued function E : HFS(X)→
[0, 1] is called an entropy measure for HFSs, if it
satisfies the following axiomatic requirements.

Let A = {〈xi, hA(xi)〉|xi ∈ X} and B = {〈xj ,
hB(xj)〉|xj ∈ X} be two HFSs,

(E1) E(A) = 0 if and only if hA(xi) = {0} or
hA(xi) = {1} for all xi ∈ X;

(E2) E(A) = 1 if and only if θ(hA(xi)) = 0.5 for all
xi ∈ X;
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(E3) E(A) ≤ E(B), if θ(hA(xi)) ≤ θ(hB(xi)) and
η(hA(xi)) ≤ η(hB(xi)) for θ(hB(xi)) ≤ 0.5,
or θ(hA(xi)) ≥ θ(hB(xi)) and η(hA(xi)) ≤
η(hB(xi)) for θ(hB(xi)) ≥ 0.5 for any xi ∈ X;

(E4) E(A) = E(Ac), where Ac is the comple-
ment of an HFS A on X, defined by Ac =
{〈xi, h

c
A(xi)〉|xi ∈ X}.

Theorem 3. Let A = {〈xi, hA(xi)〉|xi ∈ X} be an
HFS on X. Then

E(A) = 1

n

n∑
i=1

E(hA(xi)), (12)

is an entropy measure for the HFS A, where E(·) is
an entropy measure for HFEs.
Proof. Since E satisfies the requirements in Def-
inition 3, it is easy to show that E satisfies the
requirements in Definition 4.

From Theorems 2 and 3, for HFS A = {〈xi,
hA(xi)〉|xi ∈ X}, a family of entropy measures is
obtained:

Eg(A) = 1

n

n∑
i=1

f (θ(h(xi))) + kη(h(xi))

1 + kη(h(xi))
, (13)

where k ∈ [0, 1] and the function f (x) : [0, 1] →
[0, 1] satisfies f (1 − x) = f (x), and is strictly mono-
tone increasing with respect to x ∈ (0, 0.5] and
strictly monotone decreasing with respect to x ∈
[0.5, 1). Besides, it interpolates three points, (0, 0),
( 1

2 , 1) and (1, 0). Taking some special functions
f (x) such as the ones used in Subsection 3.2.
for HFEs, we can get different entropy measures
for HFSs.

4. Comparisons with existing entropy
axiomatic definitions and entropy
measures for HFEs

This section introduces a comparison between the
proposed axiomatic Definition 3 and the entropy mea-
sures with those presented in [9] and [32]. Several
examples are shown to illustrate that the proposed
entropy measures can reflect both fuzziness and hes-
itation of HFEs.

4.1. Theoretical analysis

Xu and Xia [32] proposed the following axiomatic
definition and entropy formulas for HFEs.

Definition 5. [32] An entropy on an HFE h is a
real-valued function E : H → [0, 1], satisfying the
following axiomatic requirements:

(E1) E(h) = 0, if and only if h = {0} or h = {1};
(E2) E(h) = 1, if and only if hi + hl−i+1 = 1 for i =

1, 2, . . . , l;
(E3) E(h1) ≤ E(h2), if hi

1 ≤ hi
2 for hi

2 + hl−i+1
2 ≤

1, or hi
1 ≥ hi

2 for hi
2 + hl−i+1

2 ≥ 1 , where h1
and h2 have the same length l obtained by
repeating elements.

(E4) E(h) = E(hc).

Based on Definition 5, the following entropy mea-
sures are proposed:

E1(h) = 1

l(
√

2 − 1)

l∑
i=1

{sin
π(hi + hl−i+1)

4

+ sin
π(2 − hi − hl−i+1)

4
− 1},

(14)

E2(h) = 1

l(
√

2 − 1)

l∑
i=1

{cos
π(hi + hl−i+1)

4

+ cos
π(2 − hi − hl−i+1)

4
− 1},

(15)

E3(h) = − 1

l ln 2

l∑
i=1

{h
i + hl−i+1

2
ln

hi + hl−i+1

2

+2 − hi − hl−i+1

2
ln

2 − hi − hl−i+1)

2
}

(16)

E4(h) = 1

l(2(1−s)t − 1)

l∑
i=1

{((h
i + hl−i+1

2
)s

+ (
2 − hi − hl−i+1

2
)s)t − 1}.

(17)

Definition 5 generalizes the axiomatic definition
of entropy for FSs [6] and aims to define the entropy
measure of an HFE h based on the similarity degree
of h and hc. It is noted that the condition (E3) is
too strong to discriminate the uncertain degrees of
some HFEs, even though they are apparently differ-
ent. While using (E3) of the Definition 3, the entropy
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values of more HFEs can be compared and this com-
parison is more coherent with people’s intuition.

For example, suppose that the membership degree
of one element to a set provided by one decision
group is represented by the HFE h1 = {0.1, 0.9} and
the membership degree provided by another decision
group is represented by the HFE h2 = {0.11}.

The HFE h1 = {0.1, 0.9} depicts the situation that
some experts in the group provide the membership
degree 0.1, and the other provide the membership
degree 0.9. There are bigger disagreements among
experts in this group. The information provided by
the HFE h1 = {0.1, 0.9} involves hesitation and we
are not sure whether the element belongs to the set or
not. The HFE h2 = {0.11} implies that the element
is belonging to the set with a degree 0.11. The infor-
mation does not involve hesitation. Intuitively, the
uncertain degree of h1 is higher than h2. But for the
two HFEs h1 = {0.1, 0.9} and h2 = {0.11, 0.11}, we
have 0.11 > 0.1 and 0.11 < 0.9. So, from condition
(E3) of the Definition 5, it is not possible to compare
the entropies of the HFEs h1 and h2. However, tak-
ing into account (E3) of the proposed Definition 3,
we have E(h1) > E(h2) since θ(h2) < θ(h1) ≤ 0.5
and η(h2) < η(h1). This result accords with people’s
intuition.

On the other hand, using the condition (E3) of the
Definition 5 to compare two HFEs, it is necessary
to extend the shorter HFE to have the same length
as the longer one. Any value in the shorter one can
be added to extend it. The comparison results will be
susceptible to the added elements. However, if (E3) of
the proposed Definition 3 is used, it is not necessary
to add any value to compare the HFEs.

For example, let h1 = {0.2, 0.5} and h2 =
{0.2, 0.3, 0.4} be two HFEs. If h1 is extended to
h1 = {0.2, 0.5, 0.5}, then E(h1) > E(h2) using the
condition (E3) of the Definition 5. But if it is extended
to h1 = {0.2, 0.2, 0.5}, then it is not possible to com-
pare the two HFEs by this condition. Nevertheless,
by using the condition (E3) of the Definition 5,
since θ(h2) < θ(h1) ≤ 0.5 and η(h2) < η(h1), then
E(h1) > E(h2).

The entropy measures E1, E2, E3 and E4 defined
by Equations 14–17 which consider the fuzziness
of the HFEs are analyzed. In fact, for an HFE h =
{h1, h2, . . . , hl}, the entropy measures change with

the values of hi+hl−i+1

2 . If hi+hl−i+1

2 < 0.5, the big-

ger the value of hi+hl−i+1

2 , then the bigger the value
of θ(h) is, and furthermore the bigger the entropy is.

If hi+hl−i+1

2 > 0.5, the bigger the value of hi+hl−i+1

2 ,

then the bigger the value of θ(h) is, and the smaller the
entropy is. For any two HFEs h1 and h2 with the same
length l, if hi

1 + hl−i+1
1 = hi

2 + hl−i+1
2 for any i =

1, 2, . . . , l, then θ(h1) = θ(h2), thus E(h1) = E(h2).
In contrast to Equations 14–17, the entropy calculated
by Equation 7 changes with the value of score func-
tion and the value of deviation function of an HFE. It
considers not only the fuzziness of an HFE, but also
its hesitation degree. Therefore, the entropy measure
defined by Equation 7 has bigger ability to compare
the uncertainties of HFEs.

On the other hand, Farhadinia [9] gave the follow-
ing axiomatic definition of entropy measure based on
the distance d proposed in [31] between two HFEs.

Definition 6. An entropy on an HFE h is a real-valued
function E : H → [0, 1], satisfying the following
axiomatic requirements:

(E1) E(h) = 0, if and only if h = {0} or h = {1};
(E2) E(h) = 1, if and only if h = {0.5} ;
(E3) E(h1) ≤ E(h2), if d(h, {0.5}) ≥ d(h, {0.5})
(E4) E(h) = E(hc).

Based on Definition 6, the following theorem is
given in [9] to provide an approach to build a family
of entropies for HFEs using a distance between HFEs.

Theorem 4. Let Z : [0, 1] → [0, 1] be a strictly
monotone decreasing real function, and d be a dis-
tance between HFEs. Then Ed(h) = 2d(h,{0.5})−Z(1)

Z(0)−Z(1)
is an entropy for the HFE h based on the correspond-
ing distance d.

Xu and Xia [31] defined a variety of distance mea-
sures for HFSs that have been reviewed in Section
2. These distance measures can be used to calculate
the distance between an HFE h and {0.5}. Therefore,
in Theorem 4, if Z(x) = 1 − x and d is defined by
Equation 2 with λ = 1. Then

Ed(h) = 1−2dgh(h, {0.5}) = 1− 1

l

l∑
i=1

2
∣∣hi−0.5

∣∣

(18)
Note that Definition 6 is based on the distance d

between the HFEs h and {0.5}, and it only consid-
ers the fuzziness of an HFE. Therefore, for any two
HFEs that have the same distance to {0.5}, the entropy
is equal by using the entropy formula Ed defined by
Equation 18. For example, let h1 = {0, 1}, h2 = {0}
be two HFEs. The entropy obtained for them is
Ed(h1) = Ed(h2) = 0. It is easy to see that the result
is not consistent with our reasoning. In fact, h1 =
{0, 1} represents that one expert is absolutely in favor
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and the other one is absolute opposition, and h2 = {0}
represents that the two experts are absolute opposi-
tion. The uncertainty of information represented by
h1 = {0, 1} should be the biggest. But using the Equa-
tion 18, we obtain Ed(h1) = Ed(h2) = 0, which is a
shortcoming of the entropy measure defined in [9].
Moreover, from the above example, it can be seen
that the entropy measure Ed defined in Theorem 4
does not meet the condition (E1) of the Definition 6.

4.2. Comparisons with examples

This subsection carries out a further comparison
between the existing entropy formulas by means of
an example.

Example 2. Let h1 ={0.2, 0.4}, h2 ={0.3, 0.5}, h3 =
{0.3, 0.4, 0.5}, h4 = {0.4, 0.5}, h5 = {0.3, 0.6}, h6 =
{0.3, 0.5, 0.6}, h7 = {0.2, 0.5, 0.7}, h8 = {0.4, 0.5,
0.6}, h9 = {0, 1}, be nine HFEs.

The entropies of these HFEs are calculated by the
entropy measures E1, E2, E3, E4, Eg1, Eg2,Eg3,Eg4
and Ed(λ = 1), respectively. The results are shown
in Table 1.

From Table 1, we can see that entropy values calcu-
lated by Ei(i = 1, 2, 3, 4) and Egi(i = 1, 2, 3, 4) get
larger when the score function values θ(h) increase.
But the entropies E1, E2, E3 and E4 cannot distin-
guish the uncertainty of HFEs that have the same
score function values, since Ei(h6) = Ei(h7)(i =
1, 2, 3, 4) and Ei(h8) = Ei(h9)(i = 1, 2, 3, 4). The
HFEs h6 and h7, h8 and h9 have the same
score function values and different deviation val-
ues, respectively. The dispersion degree of elements
in h7 is greater than in h6, and the dispersion
degree of elements in h9 is greater than in h8.
Obviously, h7 is intuitively more uncertain than h6,
and h9 is more uncertain than h8. Using the pro-

posed entropies Egi(i = 1, 2, 3, 4), it is obtained that
Egi(h6) < Egi(h7)(i = 1, 2, 3, 4), that it is consistent
with human beings reasoning.

There is also some inconsistent results using Ed

defined by Equation 18. The entropy Ed(h2) =
Ed(h3) and Ed(h4) > Ed(h5), while Egi(h3) <

Egi(h2) and Egi(h4) < Egi(h5)(i = 1, 2, 3, 4). There-
fore, the results Ed(h2) = Ed(h3) and Ed(h4) >

Ed(h5) are not consistent with our reasoning. In fact,
h2 and h3, h4 and h5 have the same score function val-
ues respectively. The dispersion degree of elements
in h2 is greater than in h3, and the dispersion degree
of elements in h5 is greater than in h4. Obviously, h2
is intuitively more uncertain than h3 and h5 is more
uncertain than h4, that it is the fact reflected by the
entropies Egi (i = 1, 2, 3, 4) .

From the above analysis, the entropy measures
Egi (i = 1, 2, 3, 4) are more effective to reflect hes-
itation and fuzziness of HFEs.

5. A method for multi-criteria
decision-making based on entropy
measures for HFEs

Entropy measures have been applied in many prob-
lems such as optimizing the distinguishability of
input space partitioning and assessing the weights
of experts or criteria in intuitionistic fuzzy decision-
making [11, 25, 34]. In this section, a method
is proposed to solve multi-criteria decision-making
problems with unknown criterion weights [5]. The
entropy measures for HFSs are used to determinate
the criteria’ weights and the idea of TOPSIS method
is used to rank alternatives.

The multi-criteria decision-making problem
which is considered in this paper can be rep-
resented as follows. There are m alternatives,

Table 1
The entropies of hi(i = 1, 2, . . . , 9) by different entropy formulas

h1 h2 h3 h4 h5 h6 h7 h8 h9

θ(h) 0.3 0.4 0.4 0.45 0.45 0.47 0.47 0.5 0.5
η(h) 0.2 0.2 0.133 0.1 0.3 0.2 0.333 0.133 1
E1(h) 0.833 0.958 0.958 0.989 0.989 0.993 0.993 1 1
E2(h) 0.833 0.958 0.958 0.989 0.989 0.993 0.993 1 1
E3(h) 0.881 0.971 0.971 0.993 0.993 0.995 0.995 1 1
E4(h) 0.9165 0.9798 0.9798 0.995 0.995 0.997 0.997 1 1
Ed (h) 0.6 0.8 0.8 0.9 0.7 0.8 0.667 0.867 0
Eg1(h) 0.667 0.833 0.823 0.909 0.923 0.944 0.950 1 1
Eg2(h) 0.510 0.743 0.727 0.858 0.880 0.913 0.922 1 1
Eg3(h) 0.841 0.959 0.957 0.989 0.990 0.995 0.996 1 1
Eg4(h) 0.867 0.967 0.965 0.991 0.992 0.996 0.997 1 1
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denoted by X = {x1, x2, . . . , xm}. Each alternative
is assessed by means of n criteria, denoted by
C = {C1, C2, . . . , Cn}. Assume that the weights
of the criteria Cj(j = 1, 2, . . . , n) are unknown.
The characteristics of the alternative xi in terms of
the criterion Cj are represented by the following
HFSs:

Mi = {〈Cj, hij〉|Cj ∈ C}, i = {1, 2, . . . , m},
where hij is an HFE that indicates the degree in which
the alternative Mi satisfies the criterion Cj . Espert’s
goal is to obtain a ranking of alternatives.

In practical multi-criteria decision-making prob-
lems, it is an important research topic to determine
the weights of criteria. In the following, it is pro-
posed a method to obtain the weights of criteria
based on the proposed entropy measures according
to experts’ evaluation information, and a method
to solve the above multi-criteria decision-making
problem.

The multi-criteria decision-making approach
contains three processes: (1) determinate the weights
of the criteria; (2) derive the comprehensive evalua-
tions of the alternatives; (3) rank the alternatives.

1. Determination of the weights of the criteria: the
proposed entropy measures are used to com-
pute the criteria weights. Let Cj = {〈xi, hij〉|xi ∈
X}, j = {1, 2, . . . , n} be an HFS on the alterna-
tive set X, which includes the overall assessment
values for all the alternatives xi(i = 1, 2, . . . , m)
under the criteria Cj . Therefore, the entropy Ej

of Cj can be calculated by Equations 8–11, where
Ej = 1

m

∑m
i=1 E(hij). Ej indicates the uncer-

tainty degree of the assessment provided for
the criterion Cj . During the practical decision-
making process, we usually expect that the
uncertainty degree of the assessment is as small as
possible. Thus, if the entropy value Ej related to
the criterion Cj is lower, we assign it a higher
weight, and vice versa. Therefore, the criteria
weights are defined as follows:

ωj = 1 − Ej

n − ∑n
j=1 Ej

, j = {1, 2, . . . , n} (19)

2. Deriving the comprehensive evaluations of the
alternatives: this process is divided into three
steps.
(a) Firstly it is necessary to find the positive-

ideal solution and negative-ideal solution. Let
J1 and J2 be the sets of benefit criteria and

cost criteria in the criterion set C, respec-
tively. Suppose that H+ = {〈Cj, h

+
j 〉|Cj ∈

C} is the hesitant fuzzy positive-ideal solution,
and H− = {〈Cj, h

−
j 〉|Cj ∈ C} is the hesitant

fuzzy negative-ideal solution, where h+
j =

{1}, h−
j = {0}, j ∈ J1 and h+

j = {0}, h−
j =

{1}, j ∈ J2.
(b) By using Equation 3, the distance between the

alternative Mi and the positive-ideal solution
or the negative-ideal solution can be com-
puted:

D+(Mi) = dghw(Mi, H
+),

D−(Mi) = dghw(Mi, H
−),

being i = {1, 2, . . . m}.
(c) The relative closeness degree D(Mi) of the

alternative Mi to the ideal solution is obtained
as follows.

D(Mi) = D+(Mi)
D+(Mi)+D−(Mi)

, i = 1, 2, . . . m.

3. Ranking the alternatives: the alternatives are
ordered according to the relative closeness
degrees.

The following steps show how to apply the multi-
criteria decision making method.

Step 1. Calculate the criterion weights by Equa-
tion 19.

Step 2. Calculate the distances of each alternative to
the positive-ideal solution D+(Mi), and the
negative-ideal solution D−(Mi).

Step 3. Calculate the relative closeness degree
D(Mi) for each alternative.

Step 4. Rank the alternatives Mi according to the
values of D(Mi)(i = 1, 2, . . . , m) in ascend-
ing order, and the smaller the value of D(Mi),
the better the alternative Mi .

6. Illustrative example

A case study concerning the health-care waste
management is employed to illustrate the efficiency

Table 2
Criteria to evaluate a telecommunications service

Criterion Description of criterion

Price C1 How the company is satisfied with the price, which
will be paid for the telecommunications service

Quality C2 What level the telecommunications service
can reach

Service C3 The maintenance and repair
Safeguard C4 The reliability of information protection
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Table 3
Assessments over the alternatives and criteria

Eg1 C1 C2 C3 C4 Eg2 C1 C2 C3 C4

M1 0.9091 0.7273 0.7273 0.5455 M1 0.8578 0.5873 0.5873 0.3572
M2 0.6471 0.5455 0.5455 0.9091 M2 0.4814 0.3572 0.3572 0.8578
M3 0.8235 0.9091 0.8235 0.7273 M3 0.7273 0.8578 0.7273 0.5873
M4 0.3636 0.7273 0.9143 0.6471 M4 0.19 0.5873 0.8659 0.4814
M5 0.6471 0.9143 0.4706 0.8235 M5 0.4814 0.8659 0.2862 0.7273

Eg3 C1 C2 C3 C4 Eg4 C1 C2 C3 C4

M1 0.9888 0.9009 0.9009 0.7337 M1 0.9909 0.9182 0.9182 0.7727
M2 0.8315 0.7337 0.7337 0.9888 M2 0.8588 0.7727 0.7727 0.9909
M3 0.9568 0.9888 0.9568 0.9009 M3 0.9647 0.9909 0.9647 0.9182
M4 0.5036 0.9009 0.9894 0.8315 M4 0.5545 0.9182 0.9914 0.8588
M5 0.8315 0.9894 0.6363 0.9568 M5 0.8588 0.9914 0.6824 0.9647

Table 4
Entropies and weights of the criteria

E1 E2 E3 E4 w1 w2 w3 w4

Eg1 0.6781 0.7647 0.6962 0.7305 Eg1 0.2848 0.2082 0.2687 0.2384
Eg2 0.5476 0.6511 0.5648 0.6022 Eg2 0.2768 0.2135 0.2663 0.2434
Eg3 0.8224 0.9028 0.8434 0.8824 Eg3 0.3234 0.1771 0.2852 0.2143
Eg4 0.8456 0.9183 0.8659 0.9011 Eg4 0.3292 0.1742 0.2858 0.2108

Table 5
Distances and relative closeness degrees for each alternative

Eg1 D−(Mi) D+(Mi) D(Mi) Eg2 D−(Mi) D+(Mi) D(Mi)

M1 0.4737 0.5773 0.5493 M1 0.4736 0.578 0.5497
M2 0.678 0.3623 0.3482 M2 0.6771 0.3636 0.3494
M3 0.6064 0.4058 0.4009 M3 0.6064 0.4058 0.4009
M4 0.613 0.486 0.4422 M4 0.6101 0.4882 0.4445
M5 0.6842 0.3529 0.3403 M5 0.6828 0.3545 0.3417

Eg3 D−(Mi) D+(Mi) D(Mi) Eg4 D−(Mi) D+(Mi) D(Mi)

M1 0.4727 0.5751 0.5488 M1 0.4731 0.5743 0.5483
M2 0.6825 0.3559 0.3428 M2 0.6831 0.355 0.342
M3 0.6068 0.4056 0.4006 M3 0.6068 0.4057 0.4007
M4 0.6259 0.4759 0.4319 M4 0.6281 0.4741 0.4301
M5 0.6924 0.344 0.3319 M5 0.6932 0.3431 0.3311

of the multi-criteria decision making method pro-
posed in the previous section.

Nowadays, the competition among telecommuni-
cations services is increasing and it is much more
difficult for SMEs (Small and Medium-sized Enter-
prises) to choose a suitable telecommunications
service to improve their business operations, since
ample resources can be a big obstacle. Suppose
that a SME has to select the best telecommuni-
cations service provider to improve its benefits.
There are five possible alternatives: provider 1
(M1), provider 2 (M2), provider 3 (M3), provider
4 (M4) and provider 5 (M5). Based on the society

research, four major criteria are considered to evalu-
ate these five telecommunications service providers.
These criteria are: The satisfaction of price (C1),
Quality (C2), Service (C3), and Safeguard (C4).
A detailed description of such criteria is given in
Table 2.

Let us suppose a decision organization with five
experts authorized to assess the satisfactory degree
of an alternative with respect to a criterion, which
is represented by an HFE. The evaluations of the
five possible alternatives Mi(i = 1, 2, . . . , 5) under
the above four criteria can be represented by the fol-
lowing HFSs:
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M1 = {〈C1, {0.5, 0.6}〉, 〈C2, {0.6, 0.7}〉, 〈C3, {0.3,
0.4}〉, 〈C4, {0.2, 0.3}〉},

M2 = {〈C1, {0.6, 0.7, 0.8}〉, 〈C2, {0.7, 0.8}〉, 〈C3,
{0.7, 0.8}〉, 〈C4, {0.4, 0.5}〉},

M3 = {〈C1, {0.5, 0.6, 0.7}〉, 〈C2, {0.5, 0.6}〉, 〈C3,
{0.5, 0.6, 0.7}〉, 〈C4, {0.6, 0.7}〉},

M4 = {〈C1, {0.8, 0.9}〉, 〈C2, {0.6, 0.7}〉, 〈C3, {0.3,
0.4, 0.5, 0.6}〉, 〈C4, {0.2, 0.3, 0.4}〉},

M5 = {〈C1, {0.6, 0.7, 0.8}〉, 〈C2, {0.4, 0.5, 0.6,
0.7}〉, 〈C3, {0.7, 0.8, 0.9}〉, 〈C4, {0.5, 0.6,
0.7}〉}.

The multi-criteria decision making approach pro-
posed in Section 5 will be used to get the most
desirable alternative(s).

Step 1. Determine the criterion weights.
With the entropy measures Eg1, Eg2, Eg3
and Eg4 defined by Equations 8–11, are
calculated the entropies of HFEs, which con-
struct the entropy matrices shown in Table 3,
respectively.
According to each entropy matrix calcu-
lated by Egi and Equation 19, the entropies
Ei and the weights wi of criteria Ci(i =
1, 2, 3, 4) are calculated and shown in
Table 4.

Step 2. Calculate the distance D+(Mi) and D−(Mi)
between each alternative and the positive-
ideal and negative-ideal solution, respec-
tively. Afterwards, the relative closeness
degrees D(Mi), for each alternative is
obtained (see Table 5).

Step 3. Taking into account the relative close-
ness degree obtained for each alternative
D(Mi)(i = 1, 2, . . . , m), the ranking of
alternatives obtained by using different
entropy measures Egi(i = 1, 2, 3, 4) is as
follows:

M1 � M4 � M3 � M2 � M5.

In the above calculation process, we adopt the
entropy formulas Eg1, Eg2, Eg3 and Eg4 to calcu-
late the criteria weights and the relative closeness
degrees of alternatives, respectively. From Table 4,
it is easy to see that criteria weights obtained by
each entropy measure are different, but the ranking
of these weights are the same, that is, w1 > w3 >

w4 > w2. Under different entropy measures, the rel-
ative closeness degrees of alternatives are different,
but the gaps between these values are very small,
therefore the ranking of alternatives is the same.

Fig. 2. Comparisons of weights under Egi.

Fig. 3. Comparisons of relative closeness degrees under Egi.

The comparisons of weights and relative closeness
degrees under the four entropy measures are shown in
Figs. 2 and 3.

7. Conclusions

An HFS, whose membership is represented by a set
of possible values, is more suitable to represent the
uncertain information when experts hesitate among
several values. In this paper, the entropy measures
(being important topics of information measures) of
HFEs and HFSs have been studied. An axiomatic
definition and a concrete entropy formula for HFEs
have been proposed. Then a family of entropy mea-
sures based on the entropy measure aforementioned
has been presented. These entropy measures have
been compared with the existing ones. The com-
parison results reflect that the proposed axiomatic
definitions and entropy measures can depict both
fuzziness and hesitation of HFEs and HFSs, and they
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are able to compare HFEs when the existing ones
cannot. Finally, the proposed entropy measures have
been used to determinate the criteria weights and
a multi-criteria decision making approach has been
developed to deal with hesitant fuzzy information. In
the future, we will further investigate the entropy the-
ory on the hesitant fuzzy linguistic term sets and its
application in decision making.
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